Effectuses in Categorical Quantum Foundations

This thesis develops the theory of effectuses as a categorical axiomatic approach to quantum theory. It provides a comprehensive introduction to effectus theory and reveals its connections with various other topics and approaches.

[1]  Bas Westerbaan,et al.  A universal property for sequential measurement , 2016 .

[2]  Sean Tull,et al.  Operational Theories of Physics as Categories , 2016, ArXiv.

[3]  D. Foulis,et al.  Quantum logic and partially ordered abelian groups , 2007 .

[4]  Shûichirô Maeda,et al.  Dimension Functions on Certain General Lattices , 1955 .

[5]  Thomas Weighill,et al.  Bifibrational duality in non-abelian algebra and the theory of databases , 2014 .

[6]  Bart Jacobs,et al.  Categorical Logic and Type Theory , 2001, Studies in logic and the foundations of mathematics.

[7]  J. V. D. Wetering An effect-theoretic reconstruction of quantum theory , 2018, Compositionality.

[8]  J. Rosický,et al.  Syntactic characterizations of various classes of locally presentable categories , 2001 .

[9]  Francis Borceux,et al.  Handbook of Categorical Algebra: Internal category theory , 1994 .

[10]  Aleks Kissinger,et al.  Completely positive projections and biproducts , 2013, QPL.

[11]  L. H. Loomis,et al.  The lattice theoretic background of the dimension theory of operator algebras , 1955 .

[12]  Stanley Gudder,et al.  S-Dominating Effect Algebras , 1998 .

[13]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[14]  Giulio Chiribella,et al.  Quantum from principles , 2015, ArXiv.

[15]  Sylvia Pulmannová,et al.  Representation theorem for convex effect algebras , 1998 .

[16]  Giulio Chiribella,et al.  Quantum Theory from First Principles - An Informational Approach , 2017 .

[17]  Bart Jacobs,et al.  An Effect-Theoretic Account of Lebesgue Integration , 2015, MFPS.

[18]  Bart Jacobs,et al.  The Expectation Monad in Quantum Foundations , 2011, ArXiv.

[19]  E. Doberkat Stochastic Relations : Foundations for Markov Transition Systems , 2007 .

[20]  Andrew M. Pitts,et al.  Categorical logic , 2001, LICS 2001.

[21]  Philip J. Scott,et al.  A categorical model for the geometry of interaction , 2006, Theor. Comput. Sci..

[22]  Tsit Yuen Lam,et al.  A first course in noncommutative rings , 2002 .

[23]  Robin Kaarsgaard Condition/Decision Duality and the Internal Logic of Extensive Restriction Categories , 2019, MFPS.

[24]  Ana Sokolova,et al.  Generic Trace Semantics via Coinduction , 2007, Log. Methods Comput. Sci..

[25]  Raymond Lal,et al.  Causal Categories: Relativistically Interacting Processes , 2011, 1107.6019.

[26]  Ernst-Erich Doberkat Stochastic Coalgebraic Logic , 2009, Monographs in Theoretical Computer Science. An EATCS Series.

[27]  A. Peressini Ordered topological vector spaces , 1967 .

[28]  Aleks Kissinger,et al.  Categories of quantum and classical channels , 2016, Quantum Inf. Process..

[29]  Robert Furber Categorical Duality in Probability and Quantum Foundations , 2017 .

[30]  Frank Roumen,et al.  Cohomology of Effect Algebras , 2016, QPL.

[31]  Marco Grandis,et al.  On the categorical foundations of homological and homotopical algebra , 1992 .

[32]  Dexter Kozen,et al.  Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[33]  M. Keyl Fundamentals of quantum information theory , 2002, quant-ph/0202122.

[34]  Ana Sokolova,et al.  Coalgebraic analysis of probabilistic systems , 2005 .

[35]  Sean Tull,et al.  Categorical Operational Physics , 2019, ArXiv.

[36]  W. Greiner Mathematical Foundations of Quantum Mechanics I , 1993 .

[37]  Prakash Panangaden,et al.  Labelled Markov Processes , 2009 .

[38]  Paul Busch,et al.  Heisenberg Uncertainty Relation (Indeterminacy Relations) , 2009, Compendium of Quantum Physics.

[39]  Rudolf Haag,et al.  Local quantum physics : fields, particles, algebras , 1993 .

[40]  Bart Jacobs,et al.  A Recipe for State-and-Effect Triangles , 2017, Log. Methods Comput. Sci..

[41]  L. Zadeh Probability measures of Fuzzy events , 1968 .

[42]  Yuan Feng,et al.  Proof rules for the correctness of quantum programs , 2007, Theor. Comput. Sci..

[43]  Thomas Weighill,et al.  Duality in non-abelian algebra III. Normal categories and 0-regular varieties , 2017 .

[44]  B. Coecke,et al.  Operational Quantum Logic: An Overview , 2000, quant-ph/0008019.

[45]  Bart Jacobs,et al.  A Note on Distances between Probabilistic and Quantum distributions , 2018, MFPS.

[46]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[47]  Howard Barnum,et al.  Information Processing in Convex Operational Theories , 2009, QPL/DCM@ICALP.

[48]  This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivs 3.0 Licence. To view a copy of the licence please see: http://creativecommons.0rg/licenses/by-nc-nd/3.0/ INEQIMTES IN THE DELIVERY OF SERVICES TO A FEMALE FARM CLIENTELE: SOME~~ , 2010 .

[49]  Bart Jacobs,et al.  The Mathematics of Changing One's Mind, via Jeffrey's or via Pearl's Update Rule , 2018, J. Artif. Intell. Res..

[50]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[51]  Bas Westerbaan,et al.  Sequential product on effect logics , 2013 .

[52]  A. Kock COMMUTATIVE MONADS AS A THEORY OF DISTRIBUTIONS , 2011, 1108.5952.

[53]  John E. Roberts,et al.  Some basic concepts of algebraic quantum theory , 1969 .

[54]  Sonja Smets,et al.  Logic and Quantum Physics , 2010 .

[56]  Esfandiar Haghverdi,et al.  A categorical approach to linear logic, geometry of proofs and full completeness. , 2000 .

[57]  M. Sentís Quantum theory of open systems , 2002 .

[58]  H. Peter Gumm,et al.  Monoid-labeled transition systems , 2001, CMCS.

[59]  V. Varadarajan Geometry of quantum theory , 1968 .

[60]  Kenta Cho Total and Partial Computation in Categorical Quantum Foundations , 2015, QPL.

[61]  Paul Busch,et al.  Lüders Rule , 2009, Compendium of Quantum Physics.

[62]  Bart Jacobs,et al.  Quantum Logic in Dagger Kernel Categories , 2009, QPL@MFPS.

[63]  G. Pedersen C-Algebras and Their Automorphism Groups , 1979 .

[64]  Zurab Janelidze,et al.  On the Form of Subobjects in Semi-Abelian and Regular Protomodular Categories , 2014, Appl. Categorical Struct..

[65]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[66]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[67]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[68]  Thomas Weighill DUALITY IN NON-ABELIAN ALGEBRA I. FROM COVER RELATIONS TO GRANDIS EX2-CATEGORIES , 2014 .

[69]  Aleks Kissinger,et al.  Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .

[70]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement , 2012 .

[71]  Reinhard Börger,et al.  A cogenerator for preseparated superconvex spaces , 1996, Appl. Categorical Struct..

[72]  Tobias Fritz,et al.  Convex Spaces I: Definition and Examples , 2009, 0903.5522.

[73]  Stefano Gogioso,et al.  Infinite-dimensional Categorical Quantum Mechanics , 2016, QPL.

[74]  Rainer Nagel,et al.  Order unit and base norm spaces , 1974 .

[75]  P. Busch,et al.  Some important classes of quantum measurements and their information gain , 1991 .

[76]  D. A. Edwards On the Homeomorphic Affine Embedding of a Locally Compact Cone into a Banach Dual Space Endowed with the Vague Topology , 1964 .

[77]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[78]  Ugo Dal Lago,et al.  Effectful applicative bisimilarity: Monads, relators, and Howe's method , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[79]  Hans Dobbertin,et al.  Refinement monoids, Vaught monoids, and Boolean algebras , 1983 .

[80]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[81]  M. Reed,et al.  Methods of Mathematical Physics , 1980 .

[82]  Naohiko Hoshino,et al.  A Representation Theorem for Unique Decomposition Categories , 2012, MFPS.

[83]  I. M. Gelfand,et al.  On the embedding of normed rings into the ring of operators in Hilbert space , 1987 .

[84]  Samson Abramsky,et al.  Geometry of Interaction and linear combinatory algebras , 2002, Mathematical Structures in Computer Science.

[85]  Marian Grabowski,et al.  Repeatable measurements in quantum theory: Their role and feasibility , 1995 .

[86]  Ladislav Beran,et al.  Orthomodular Lattices: Algebraic Approach , 1985 .

[87]  Roman Fric,et al.  A Categorical Approach to Probability Theory , 2010, Stud Logica.

[88]  Chris Heunen,et al.  Pictures of complete positivity in arbitrary dimension , 2011, Inf. Comput..

[89]  J. Wright Measures with Values in a Partially Ordered Vector Space , 1972 .

[90]  F. William Lawvere,et al.  Adjointness in Foundations , 1969 .

[91]  Pawel Sobocinski,et al.  Being Van Kampen is a universal property , 2011, Log. Methods Comput. Sci..

[92]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[93]  David J. Foulis,et al.  A Half-Century of Quantum Logic What Have We Learned? , 1999 .

[94]  Bart Jacobs,et al.  From Coalgebraic to Monoidal Traces , 2010, CMCS@ETAPS.

[95]  Bart Jacobs,et al.  Healthiness from Duality , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[96]  Stanley Gudder,et al.  Convex structures and operational quantum mechanics , 1973 .

[97]  Bart Jacobs,et al.  Scalars, Monads, and Categories , 2010, Quantum Physics and Linguistics.

[98]  G. Ludwig,et al.  An Axiomatic Basis for Quantum Mechanics Volume 1: Derivation of Hilbert Space Structure and Volume 2: Quantum Mechanics and Macrosystems , 1988 .

[99]  J. Robin B. Cockett,et al.  Introduction to distributive categories , 1993, Mathematical Structures in Computer Science.

[100]  A SURVEY ON SHARP ELEMENTS IN UNSHARP QUANTUM LOGICS , 2001 .

[101]  Bart Jacobs,et al.  Towards a Categorical Account of Conditional Probability , 2013, ArXiv.

[102]  David J. Foulis,et al.  Filters and supports in orthoalgebras , 1992 .

[103]  Bart Jacobs,et al.  An Introduction to Effectus Theory , 2015, ArXiv.

[104]  The support of a uniform semigroup valued measure , 2007 .

[105]  Ohad Kammar,et al.  A convenient category for higher-order probability theory , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[106]  Bart Jacobs,et al.  States of Convex Sets , 2015, FoSSaCS.

[107]  Kenta Cho,et al.  Semantics for a Quantum Programming Language by Operator Algebras , 2014, New Generation Computing.

[108]  Bart Jacobs,et al.  From probability monads to commutative effectuses , 2018, J. Log. Algebraic Methods Program..

[109]  Günther Ludwig,et al.  Attempt of an axiomatic foundation of quantum mechanics and more general theories, II , 1967 .

[110]  Tom Leinster,et al.  An objective representation of the Gaussian integers , 2004, J. Symb. Comput..

[111]  Bart Jacobs,et al.  The Logical Essentials of Bayesian Reasoning , 2018, Foundations of Probabilistic Programming.

[112]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[113]  G. Ludwig Attempt of an axiomatic foundation of quantum mechanics and more general theories. III , 1968 .

[114]  Bart Jacobs,et al.  Quotient-Comprehension Chains , 2015, ArXiv.

[115]  Peter Selinger,et al.  Idempotents in Dagger Categories: (Extended Abstract) , 2008, QPL.

[116]  Ohad Kammar,et al.  Denotational validation of higher-order Bayesian inference , 2017, Proc. ACM Program. Lang..

[117]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[118]  Prakash Panangaden,et al.  Quantum weakest preconditions , 2005, Mathematical Structures in Computer Science.

[119]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[120]  И.М. Гельфанд,et al.  On the imbedding of normed rings into the ring of operators in Hilbert space , 1943 .

[121]  Stanley Gudder,et al.  A general theory of convexity , 1979 .

[122]  Convex Structures and Effect Algebras , 1999 .

[123]  Bart Jacobs,et al.  Dijkstra and Hoare monads in monadic computation , 2015, Theor. Comput. Sci..

[124]  E. Alfsen Compact convex sets and boundary integrals , 1971 .

[125]  E. Stachow An Operational Approach to Quantum Probability , 1978 .

[126]  Bart Jacobs,et al.  Probabilities, distribution monads, and convex categories , 2011, Theor. Comput. Sci..

[127]  Aleks Kissinger,et al.  Categories of Quantum and Classical Channels (extended abstract) , 2012, QPL.

[128]  Ichiro Hasuo,et al.  Tracing Anonymity with Coalgebras , 2008 .

[129]  Edsger W. Dijkstra,et al.  A Discipline of Programming , 1976 .

[130]  Thomas Ehrhard A categorical semantics of constructions , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[131]  Abner Shimony,et al.  Chemistry, Quantum Mechanics and Reductionism: Perspectives in Theoretical Chemistry , 1981 .

[132]  M. Ozawa Quantum measuring processes of continuous observables , 1984 .

[133]  D. Pumplün The Metric Completion of Convex Sets and Modules , 2002 .

[134]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[135]  Partial and unsharp quantum logics , 1994 .

[136]  Dexter Kozen,et al.  A probabilistic PDL , 1983, J. Comput. Syst. Sci..

[137]  P. Johnstone Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .

[138]  Sam Staton Relating Coalgebraic Notions of Bisimulation , 2009, CALCO.

[139]  Abraham Westerbaan,et al.  The Category of von Neumann Algebras , 2018, ArXiv.

[140]  P. D. Finch On the Structure of Quantum Logic , 1969, J. Symb. Log..

[141]  Huzihiro Araki,et al.  Mathematical theory of quantum fields , 1999 .

[142]  G. Jameson Ordered Linear Spaces , 1970 .

[143]  P. Busch,et al.  The quantum theory of measurement , 1991 .

[144]  C. Heunen,et al.  Categories for Quantum Theory: An Introduction , 2020 .

[145]  Bart Jacobs,et al.  Introduction to Coalgebra: Towards Mathematics of States and Observation , 2016, Cambridge Tracts in Theoretical Computer Science.

[146]  Bart Jacobs Orthomodular lattices, Foulis Semigroups and Dagger Kernel Categories , 2010, Log. Methods Comput. Sci..

[147]  Ross Street,et al.  Traced monoidal categories , 1996 .

[148]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[149]  Bart Jacobs Comprehension Categories and the Semantics of Type Dependency , 1993, Theor. Comput. Sci..

[150]  Bart Jacobs,et al.  A Formal Semantics of Influence in Bayesian Reasoning , 2017, MFCS.

[151]  S. Sakai A characterization of $W^*$-algebras. , 1956 .

[152]  Heinz König,et al.  Theory and Applications of Superconvex Spaces , 1986 .

[153]  K. Landsman Foundations of Quantum Theory: From Classical Concepts to Operator Algebras , 2017 .

[154]  Bart Jacobs,et al.  A Predicate/State Transformer Semantics for Bayesian Learning , 2016, MFPS.

[155]  Bob Coecke Terminality Implies No-signalling ...and Much More Than That , 2016, New Generation Computing.

[156]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[157]  Tom Leinster,et al.  Basic Category Theory , 2014, 1612.09375.

[158]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[159]  Kôdi Husimi Studies on the Foundation of Quantum Mechanics. I , 1937 .

[160]  Zdenka Riečanová,et al.  Sharp Elements in Effect Algebras , 2001 .

[161]  Bart Jacobs,et al.  Disintegration and Bayesian inversion via string diagrams , 2017, Mathematical Structures in Computer Science.

[162]  Thomas Weighill,et al.  Duality in non-abelian algebra II. From Isbell bicategories to Grandis exact categories , 2016 .

[163]  P. Morales,et al.  Orthogonality in Partial Abelian Monoids and Applications , 2005 .

[164]  David J. Foulis,et al.  What are Quantum Logics and What Ought They to be , 1981 .

[165]  M. Arbib,et al.  Partially additive categories and flow-diagram semantics☆ , 1980 .

[166]  Klaus Keimel,et al.  Mixed powerdomains for probability and nondeterminism , 2016, Log. Methods Comput. Sci..

[167]  Bart Jacobs,et al.  Coreflections in Algebraic Quantum Logic , 2012 .

[168]  David J. Moore,et al.  Operational quantum logic: a survey and analysis , 2009 .

[169]  Stephen Lack,et al.  The extensive completion of a distributive category , 2001 .

[170]  Ludovico Lami Non-classical correlations in quantum mechanics and beyond / , 2018, 1803.02902.

[171]  A. J. Ellis,et al.  Convexity theory and its applications in functional analysis , 1980 .

[172]  Bas Spitters,et al.  Mathematical Physics A Topos for Algebraic Quantum Theory , 2009 .

[173]  Harald Lindner,et al.  Affine parts of monads , 1979 .

[174]  Howard Barnum,et al.  Post-Classical Probability Theory , 2012, 1205.3833.

[175]  Bas Westerbaan Dagger and dilations in the category of von Neumann algebras , 2018, ArXiv.

[176]  Jun Tomiyama,et al.  ON THE PROJECTION OF NORM ONE IN W*-ALGEBRAS, III , 1957 .

[177]  G. Janelidze,et al.  Decidable (= separable) objects and morphisms in lextensive categories , 1996 .

[178]  Michael A. Arbib,et al.  Algebraic Approaches to Program Semantics , 1986, Texts and Monographs in Computer Science.

[179]  Howard Barnum,et al.  Symmetry, Compact Closure and Dagger Compactness for Categories of Convex Operational Models , 2010, J. Philos. Log..

[180]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[181]  R. Haag,et al.  An Algebraic Approach to Quantum Field Theory , 1964 .

[182]  Gonzalo E. Reyes,et al.  Doctrines in Categorical Logic , 1977 .

[183]  J. von Neumann,et al.  On rings of operators. II , 1937 .

[184]  M. H. Stone Postulates for the barycentric calculus , 1949 .

[185]  Sean Tull,et al.  Two Roads to Classicality , 2017, QPL.

[186]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[187]  Robert W. Spekkens,et al.  Foundations of Quantum Mechanics , 2007 .

[188]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[189]  Samson Abramsky,et al.  Categorical quantum mechanics , 2008, 0808.1023.

[190]  G. Lüders,et al.  Concerning the state‐change due to the measurement process , 2006 .

[191]  S. Gudder Convexity and Mixtures , 1977 .

[192]  Sam Staton,et al.  Effect Algebras, Presheaves, Non-locality and Contextuality , 2015, ICALP.

[193]  Howard Barnum,et al.  Ordered linear spaces and categories as frameworks for information-processing characterizations of quantum and classical theory , 2009, 0908.2354.

[194]  Prakash Panangaden,et al.  The Category of Markov Kernels , 1998, PROBMIV.

[195]  Bart Jacobs,et al.  Distances between States and between Predicates , 2017, Log. Methods Comput. Sci..

[196]  M. Rédei Why John von Neumann did not Like the Hilbert Space formalism of quantum mechanics (and what he liked instead) , 1996 .

[197]  Annabelle McIver,et al.  Abstraction, Refinement and Proof for Probabilistic Systems , 2004, Monographs in Computer Science.

[198]  B. Mitchell,et al.  Theory of categories , 1965 .

[199]  G. Reuter LINEAR OPERATORS PART II (SPECTRAL THEORY) , 1969 .

[200]  S. Lack,et al.  Introduction to extensive and distributive categories , 1993 .

[201]  B. Westerbaan,et al.  Dagger and Dilation in the Category of Von Neumann Algebras , 2018, 1803.01911.

[202]  E. Riehl Basic concepts of enriched category theory , 2014 .

[203]  S. Holland,et al.  The Current Interest in Orthomodular Lattices , 1975 .

[204]  Kenta Cho,et al.  The EfProb Library for Probabilistic Calculations , 2017, CALCO.

[205]  C. J. Isham,et al.  A Topos Foundation for Theories of Physics: IV. Categories of Systems , 2008 .

[206]  Esfandiar Haghverdi Partially Additive Categories and Fully Complete Models of Linear Logic , 2001, TLCA.

[207]  Roberto Giuntini,et al.  Toward a formal language for unsharp properties , 1989 .

[208]  Bart Jacobs,et al.  New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic , 2012, Log. Methods Comput. Sci..

[209]  Stephen Lack,et al.  When do completion processes give rise to extensive categories , 2001 .

[210]  Nicolaas P. Landsman,et al.  Algebraic Quantum Mechanics , 2009, Compendium of Quantum Physics.

[211]  The Duality of Partially Ordered Normed Linear Spaces , 1964 .

[212]  G. Kalmbach On Orthomodular Lattices , 1990 .

[213]  Stanley Gudder Morphisms, tensor products and σ-effect algebras , 1998 .

[214]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[215]  Michael A. Arbib,et al.  The Pattern-of-Calls Expansion Is the Canonical Fixpoint for Recursive Definitions , 1982, JACM.

[216]  R. J. Greechie,et al.  The center of an effect algebra , 1995 .

[217]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[218]  Marco Grandis,et al.  Homological Algebra: The Interplay of Homology with Distributive Lattices and Orthodox Semigroups , 2012 .

[219]  S. Sakai C*-Algebras and W*-Algebras , 1971 .

[220]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[221]  I. Fischer State Spaces Of Operator Algebras Basic Theory Orientations And C Products , 2016 .

[222]  Kenta Cho,et al.  Von Neumann Algebras form a Model for the Quantum Lambda Calculus , 2016, ArXiv.

[223]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[224]  J. Cockett,et al.  Restriction categories III: colimits, partial limits, and extensivity , 2006, math/0610500.

[225]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[226]  Bart Jacobs,et al.  Convexity, Duality and Effects , 2010, IFIP TCS.

[227]  Walter Tholen,et al.  Categorical foundations : special topics in order, topology, algebra, and Sheaf theory , 2003 .

[228]  1.3 THE PHYSICAL CONTENT OF QUANTUM KINEMATICS AND MECHANICS , 2018 .

[229]  Derek W. Robinson,et al.  C[*]- and W[*]-algebras symmetry groups decomposition of states , 1987 .

[230]  K. Ng,et al.  Partially ordered topological vector spaces , 1973 .

[231]  Esfandiar Haghverdi,et al.  Unique decomposition categories, Geometry of Interaction and combinatory logic , 2000, Mathematical Structures in Computer Science.