Nonlinear two-term time fractional diffusion-wave problem

Abstract We find the upper viscosity solutions to a nonlinear two-term time fractional diffusion-wave equation with time operator in the Caputo–Dzherbashyan sense and a nonlinear Lipschitz force term F ∈ L l o c ∞ ( [ 0 , T ) × R ) , T > 0 , x ∈ R , (1) b 1 D ∗ β 1 u ( x , t ) + b 2 D ∗ β 2 u ( x , t ) = ∂ 2 ∂ x 2 u ( x , t ) + F ( t , u ( x , t ) ) , t ≥ 0 , b 1 + b 2 = 1 , β 1 β 2 ∈ ( 0 , 2 ) , subject to the Cauchy conditions (2) u ( x , 0 ) = f ( x ) , u t ( x , 0 ) = g ( x ) , where f , g ∈ L p ( R ) , 1 ≤ p ≤ ∞ . In order to prove the existence and the uniqueness of the solution to this problem we consider first the corresponding linear one. Then, we linearize problem (1) using the first approximation to the nonlinear term F . As a framework we take L p ( R ) -spaces, 1 ≤ p ≤ ∞ .

[1]  N. Kosmatov Integral equations and initial value problems for nonlinear differential equations of fractional order , 2009 .

[2]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[3]  T. Matsuzawa A calculus approach to hyperfunctions. II , 1989 .

[4]  A. Kilbas,et al.  A Cauchy-type problem for the diffusion-wave equation with Riemann-Liouville partial derivative , 2005 .

[5]  Francesco Mainardi,et al.  The Two Forms of Fractional Relaxation of Distributed Order , 2007 .

[6]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[7]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[8]  Francesco Mainardi,et al.  Sub-diffusion equations of fractional order and their fundamental solutions , 2007 .

[9]  Guy Jumarie,et al.  An approach via fractional analysis to non-linearity induced by coarse-graining in space , 2010 .

[10]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[11]  Mirjana Stojanović,et al.  Existence–uniqueness result for a nonlinear n-term fractional equation☆ , 2009 .

[12]  W. Ames Mathematics in Science and Engineering , 1999 .

[13]  Margarita Rivero,et al.  Fractional differential equations as alternative models to nonlinear differential equations , 2007, Appl. Math. Comput..

[14]  Centro internazionale matematico estivo. Session,et al.  Viscosity solutions and applications : lectures given at the 2nd session of the Centro internazionale matematico estivo (C.I.M.E.) held in Montecatini Terme, Italy, June 12-20, 1995 , 1997 .

[15]  Juan J. Nieto,et al.  Some new existence results for fractional differential inclusions with boundary conditions , 2009, Math. Comput. Model..

[16]  Shuqin Zhang,et al.  Monotone iterative method for initial value problem involving Riemann–Liouville fractional derivatives , 2009 .

[17]  V. Lakshmikantham,et al.  Theory of Fractional Dynamic Systems , 2009 .

[18]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[19]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .