Coulomb Classifiers: Generalizing Support Vector Machines via an Analogy to Electrostatic Systems
暂无分享,去创建一个
Klaus Obermayer | Michael C. Mozer | Sepp Hochreiter | S. Hochreiter | M. Mozer | K. Obermayer | Sepp Hochreiter
[1] S. Hochreiter,et al. Coulomb Classi ers: Reinterpreting SVMs as Electrostatic Systems , 2022 .
[2] Michael S. Warren,et al. Skeletons from the treecode closet , 1994 .
[3] R. C. Williamson,et al. Classification on proximity data with LP-machines , 1999 .
[4] Lev Kantorovich,et al. Electrostatic energy calculation for the interpretation of scanning probe microscopy experiments , 2000 .
[5] Gunnar Rätsch,et al. Soft Margins for AdaBoost , 2001, Machine Learning.
[6] Joachim M. Buhmann,et al. Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[7] C. Blakemore,et al. Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[8] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[9] Anthony Widjaja,et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.
[10] J. Mercer. Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .
[11] Michael C. Mozer,et al. Coulomb Classifiers: Reinterpreting SVMs as Electrostatic Systems ; CU-CS-921-01 , 2001 .
[12] M. Aizerman,et al. Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .
[13] Bernhard Schölkopf,et al. New Support Vector Algorithms , 2000, Neural Computation.
[14] E. G. Cullwick. Principles of Electrodynamics , 1967 .