Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers

An analysis of the wave-coupling phenomena in extended-cavity semiconductor lasers is carried out to investigate the conditions of mode-hop-free single-mode operation. Taking into account the external cavity selectivity and the mode coupling via four-wave mixing in the active medium, we present a theoretical analysis of the modal competition and perform calculations that are in good agreement with experimental results obtained with a 1.55-/spl mu/m extended-cavity laser.

[1]  L. Casperson,et al.  Gain and saturation in semiconductor lasers , 1993 .

[2]  M. Zirngibl,et al.  Single longitudinal-mode stability via wave mixing in long-cavity semiconductor lasers , 1995, IEEE Photonics Technology Letters.

[3]  L. S. Cutler,et al.  Bistability in grating-tuned external-cavity semiconductor lasers , 1987 .

[4]  P. Zorabedian Axial-mode instability in tunable external-cavity semiconductor lasers , 1994 .

[5]  P. Gallion,et al.  Semiconductor laser dynamics beyond the rate-equation approximation , 1995 .

[6]  Charles Howard Henry,et al.  Longitudinal mode self‐stabilization in semiconductor lasers , 1982 .

[7]  G. Pauliat,et al.  Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions , 2002 .

[8]  Erich P. Ippen,et al.  Subpicosecond gain dynamics in GaAlAs laser diodes , 1987 .

[9]  Intermodal tuning characteristics of an InGaAsP laser with optical feedback from an external-grating reflector , 1990 .

[10]  M. de Labachelerie,et al.  Mode-hop suppression of Littrow grating-tuned lasers. , 1993, Applied optics.

[11]  Takaaki Mukai,et al.  Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5- mu m traveling-wave semiconductor laser amplifier , 1990 .

[12]  H. Schweizer,et al.  A quantitative comparison of the classical rate-equation model with the carrier heating model on dynamics of the quantum-well laser: the role of carrier energy relaxation, electron-hole interaction, and Auger effect , 1997 .

[13]  T. P. Lee,et al.  Analysis of origin of nonlinear gain in 1.5 μm semiconductor active layers by highly nondegenerate four‐wave mixing , 1994 .

[14]  J. Mark,et al.  Subpicosecond gain dynamics in InGaAsP optical amplifiers: Experiment and theory , 1992 .

[15]  CONTROL OF LASER RADIATION PARAMETERS: Limits of continuous frequency tuning of injection lasers with selective external cavities , 1995 .

[16]  Gadi Eisenstein,et al.  Femtosecond gain dynamics in InGaAsP optical amplifiers , 1990 .

[17]  Hiroshi Ishikawa,et al.  Enhancement of third-order nonlinear optical susceptibilities in compressively strained quantum wells under the population inversion condition , 1999 .

[18]  J.J. Liu,et al.  Gain saturation and the linewidth enhancement factor in semiconductor lasers , 2001, IEEE Photonics Technology Letters.

[19]  A. Bogatov,et al.  ARTICLES: Interaction of modes and self-stabilization of single-frequency emission from injection lasers , 1983 .

[20]  M. de Labachelerie,et al.  Mode-hop suppression of Littrow grating-tuned lasers: erratum. , 1994, Applied optics.

[21]  Ryoichi Ito,et al.  Longitudinal Mode Competition and Asymmetric Gain Saturation in Semiconductor Injection Lasers. II. Theory , 1988 .

[22]  Minoru Yamada,et al.  Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers , 1989 .

[23]  F. Favre,et al.  82 nm of continuous tunability for an external cavity semiconductor laser , 1991 .

[24]  A. Mecozzi Cavity standing-wave and gain compression coefficient in semiconductor lasers. , 1994, Optics letters.

[25]  Anne Talneau,et al.  Experimental investigation of the relative importance of carrier heating and spectral‐hole‐burning on nonlinear gain in bulk and strained multi‐quantum‐well 1.55 μm lasers , 1995 .

[26]  Govind P. Agrawal,et al.  Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers , 1988 .

[27]  M. Osiński,et al.  Linewidth broadening factor in semiconductor lasers--An overview , 1987 .

[28]  R. Wyatt,et al.  10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range , 1983 .

[29]  Lester F. Eastman,et al.  Nonlinear gain coefficients in semiconductor lasers: effects of carrier heating , 1996 .

[30]  R. Ito,et al.  Longitudinal Mode Competition and Asymmetric Gain Saturation in Semiconductor Injection Lasers. I. Experiment , 1988 .

[31]  Propagation equation based theory of intermodal injection locking in semiconductor lasers , 1990 .

[32]  Antonio Mecozzi,et al.  Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four‐wave mixing , 1994 .

[33]  N. Dutta,et al.  Semiconductor Lasers , 1993 .

[34]  A. Bogatov,et al.  Anomalous interaction of spectral modes in a semiconductor laser , 1975 .

[35]  U. Herzog Longitudinal mode interaction in semiconductor lasers due to nonlinear gain suppression and four-wave mixing , 1991 .

[36]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[37]  Spectral hole‐burning and gain saturation in semiconductor lasers: Strong‐signal theory , 1988 .

[38]  J. Mørk,et al.  Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning , 1994 .