Fuzzy Logic and Ontology-based Information Retrieval

Most of information retrieval (IR) approaches relies on the hypothesis that keywords extracted from a document are sufficient to evaluate the relevance of that document with respect to the query. Such an approach may insufficiently lay bare the semantic contents of the documents. In addition to keywords, automatic indexing methods need external knowledge such as thesauri and ontologies for improving the representation of documents or for expanding queries to related keywords. Moreover, ontologies may be combined with a view of for estimating the relevance of documents, the “proximity” between words, or for expressing flexible queries. In this chapter, we survey several recent approaches. Then, two types of methods are discussed in detail. The first one uses a symbolic pattern matching approach, which is based on possibilistic ontologies (where qualitative necessity and possibility degrees estimate to what extent two terms refer to the same thing). The second type of approaches projects fuzzy set representations of queries and documents on a classical ontology, and compare these projections for rank ordering the documents according to a retrieval status value.

[1]  Pablo Castells,et al.  An Ontology-Based Information Retrieval Model , 2005, ESWC.

[2]  Alexander F. Gelbukh,et al.  Information Retrieval with Conceptual Graph Matching , 2000, DEXA.

[3]  Mohand Boughanem,et al.  A fuzzy logic approach to information retrieval using an ontology-based representation of documents , 2006, Fuzzy Logic and the Semantic Web.

[4]  Wenfei Fan,et al.  Keys with Upward Wildcards for XML , 2001, DEXA.

[5]  Duncan A. Buell A problem in information retrieval with fuzzy sets , 1985, J. Am. Soc. Inf. Sci..

[6]  D. Dubois,et al.  Weighted fuzzy pattern matching , 1988 .

[7]  Ellen M. Voorhees,et al.  Query expansion using lexical-semantic relations , 1994, SIGIR '94.

[8]  Julio Gonzalo,et al.  Indexing with WordNet synsets can improve text retrieval , 1998, WordNet@ACL/COLING.

[9]  Yannis Avrithis,et al.  Self-tuning Personalized Information Retrieval in an Ontology-Based Framework , 2005, OTM Workshops.

[10]  Carolyn J. Crouch,et al.  An approach to the automatic construction of global thesauri , 1990, Inf. Process. Manag..

[11]  William A. Woods,et al.  Conceptual Indexing: Practical Large-Scale AI for Efficient Information Access , 2000, AAAI/IAAI.

[12]  Catherine Berrut Indexing medical reports: The rime approach , 1990, Inf. Process. Manag..

[13]  Iadh Ounis,et al.  Using Conceptual Graphs in a Multifaceted Logical Model for Information Retrieval , 1996, DEXA.

[14]  Philip Resnik,et al.  Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language , 1999, J. Artif. Intell. Res..

[15]  Donna K. Harman,et al.  Overview of the Sixth Text REtrieval Conference (TREC-6) , 1997, Inf. Process. Manag..

[16]  Fabio Crestani,et al.  Application of Spreading Activation Techniques in Information Retrieval , 1997, Artificial Intelligence Review.

[17]  John Yen,et al.  A fuzzy ontology-based abstract search engine and its user studies , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[18]  Myoung-Ho Kim,et al.  Information Retrieval Based on Conceptual Distance in is-a Hierarchies , 1993, J. Documentation.

[19]  Mohand Boughanem,et al.  Rank-Ordering Documents According to Their Relevance in Information Retrieval Using Refinements of Ordered-Weighted Aggregations , 2005, Adaptive Multimedia Retrieval.

[20]  Troels Andreasen,et al.  On Measuring Similarity for Conceptual Querying , 2002, FQAS.

[21]  Gabriella Pasi,et al.  A logical formulation of the Boolean model and of weighted Boolean models , 2007 .

[22]  Ollivier Haemmerlé,et al.  Representation of weakly structured imprecise data for fuzzy querying , 2003, Fuzzy Sets Syst..

[23]  Gregory Grefenstette,et al.  Cross-Language Information Retrieval , 1998, The Springer International Series on Information Retrieval.

[24]  Mohand Boughanem,et al.  Qualitative pattern matching with linguistic terms , 2004, AI Commun..

[25]  William A. Woods,et al.  Conceptual Indexing: A Better Way to Organize Knowledge , 1997 .

[26]  Karen Spärck Jones Further reflections on TREC , 2000, Inf. Process. Manag..

[27]  Henri Prade,et al.  Application of possibility and necessity measures to documentary information retrieval , 1986, IPMU.

[28]  Mohand Boughanem,et al.  Mercure at TREC7 , 1998, Text Retrieval Conference.

[29]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[30]  Mohand Boughanem,et al.  A fuzzy set approach to concept-based information retrieval , 2005, EUSFLAT Conf..

[31]  Susan T. Dumais,et al.  Latent Semantic Indexing (LSI): TREC-3 Report , 1994, TREC.

[32]  Donald H. Kraft,et al.  Fuzzy Set Techniques in Information Retrieval , 1999 .

[33]  Didier Dubois,et al.  Resolution principles in possibilistic logic , 1990, Int. J. Approx. Reason..

[34]  Mohand Boughanem,et al.  Semantic cores for representing documents in IR , 2005, SAC '05.

[35]  Nicola Guarino,et al.  OntoSeek: content-based access to the Web , 1999, IEEE Intell. Syst..

[36]  Didier Dubois,et al.  Extended Divisions for Flexible Queries in Relational Databases , 2000 .

[37]  Sadaaki Miyamoto,et al.  Fuzzy Sets in Information Retrieval and Cluster Analysis , 1990, Theory and Decision Library.

[38]  Mohand Boughanem,et al.  Graded pattern matching in a multilingual context , 2002 .

[39]  Constantin V. Negoita,et al.  On Fuzzy Systems , 1978 .

[40]  Duncan A. Buell,et al.  An analysis of some fuzzy subset applications to information retrieval systems , 1982 .

[41]  Mohand Boughanem,et al.  Evaluation of Term-based Queries using Possibilistic Ontologies , 2006, Soft Computing in Web Information Retrieva.

[42]  Clare R. Voss,et al.  Fuzzy ontologies for multilingual document exploitation , 1999, 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397).

[43]  W. Bruce Croft,et al.  The use of phrases and structured queries in information retrieval , 1991, SIGIR '91.

[44]  Paola Velardi,et al.  Extending and Enriching WordNet with OntoLearn , 2004 .

[45]  Olga Pons,et al.  Knowledge Management in Fuzzy Databases , 2000 .

[46]  Michael W. Berry,et al.  Understanding search engines: mathematical modeling and text retrieval (software , 1999 .

[47]  Didier Dubois,et al.  A HIERARCHICAL MODEL OF FUZZY CLASSES , 1997 .

[48]  Mohand Boughanem,et al.  Refining Aggregation Functions for Improving Document Ranking in Information Retrieval , 2007, SUM.

[49]  Paul Buitelaar,et al.  Evaluation Resources for Concept-based Cross-Lingual Information Retrieval in the Medical Domain , 2004, LREC.

[50]  Giorgos Stamou,et al.  Context-sensitive semantic query expansion , 2002, Proceedings 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002).

[51]  Fabio Crestani,et al.  Soft Computing in Web Information Retrieval - Models and Applications , 2006, Studies in Fuzziness and Soft Computing.

[52]  Dennis McLeod,et al.  Retrieval effectiveness of an ontology-based model for information selection , 2004, The VLDB Journal.

[53]  Alexander V. Smirnov,et al.  Ontology-Based Users and Requests Clustering in Customer Service Management System , 2005, AIS-ADM.

[54]  Gloria Bordogna,et al.  Controlling retrieval through a user-adaptive representation of documents , 1995, Int. J. Approx. Reason..

[55]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[56]  Elie Sanchez,et al.  Fuzzy Logic and the Semantic Web , 2005 .

[57]  Luigi Cinque,et al.  A Semantic-Based System for Querying Personal Digital Libraries , 2004, Document Analysis Systems.

[58]  Ronald R. Yager,et al.  A note on weighted queries in information retrieval systems , 1987, J. Am. Soc. Inf. Sci..

[59]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[60]  Didier Dubois,et al.  Semantics of quotient operators in fuzzy relational databases , 1996, Fuzzy Sets Syst..

[61]  Chang-Shing Lee,et al.  A fuzzy ontology and its application to news summarization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[62]  G. Pasi,et al.  A Fuzzy Linguistic Approach Generalizing Boolean Information Retrieval: a Model and its Evaluation , 1993 .

[63]  Christine Froidevaux,et al.  Similarity Between Queries in a Mediator , 2002, ECAI.