New methods of Laguerre pole optimization for the ARX model expansion on Laguerre bases.

The ARX-Laguerre model is a very important reduced complexity representation of linear system. However a significant reduction of this model is subject to an optimal choice of both Laguerre poles. Therefore we propose in this paper two new methods to estimate, from input/output measurements, the optimal values of Laguerre poles of the ARX-Laguerre model. The first method is based on the Newton-Raphson's iterative technique where we prove that the gradient and the Hessian can be expressed analytically. The second method is based on Genetic Algorithms. Both proposed algorithms are tested on a numerical example and on a heating benchmark.

[1]  Lothar M. Schmitt,et al.  Theory of Genetic Algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling , 2004, Theor. Comput. Sci..

[2]  Reza Akbari,et al.  A multilevel evolutionary algorithm for optimizing numerical functions , 2011 .

[3]  Noël Tanguy,et al.  Online optimization of the time scale in adaptive Laguerre-based filters , 2000, IEEE Trans. Signal Process..

[4]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[5]  Kais Bouzrara,et al.  Parametric Complexity Reduction of Discrete-Time Linear Systems Having a Slow Initial Onset or Delay , 2016 .

[6]  Kais Bouzrara,et al.  Optimal expansions of multivariable ARX processes on Laguerre bases via the Newton–Raphson method , 2016 .

[7]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[8]  I. M. Kulikovskikh,et al.  Pole position problem for Meixner filters , 2016, Signal Process..

[9]  José Ragot,et al.  Online identification of the ARX model expansion on Laguerre orthonormal bases with filters on model input and output , 2013, Int. J. Control.

[10]  B. Ninness,et al.  A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[11]  José Ragot,et al.  Nonlinear system modeling based on bilinear Laguerre orthonormal bases. , 2013, ISA transactions.

[12]  B. Wahlberg,et al.  Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .

[13]  den Ac Bert Brinker,et al.  Model reduction by orthogonalized exponential sequences , 1996 .

[14]  Jun Zhang,et al.  Clustering-Based Adaptive Crossover and Mutation Probabilities for Genetic Algorithms , 2007, IEEE Transactions on Evolutionary Computation.

[15]  Kais Bouzrara,et al.  System approximations based on Meixner-like models , 2016, IET Signal Process..

[16]  José Ragot,et al.  Online identification of the bilinear model expansion on Laguerre orthonormal bases , 2014, Int. J. Control.

[17]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[18]  David T. Westwick,et al.  On the Relationship Between the Enforced Convergence Criterion and the Asymptotically Optimal Laguerre Pole , 2012, IEEE Transactions on Automatic Control.

[19]  Robert R. Bies,et al.  A Genetic Algorithm-Based, Hybrid Machine Learning Approach to Model Selection , 2006, Journal of Pharmacokinetics and Pharmacodynamics.

[20]  I. M. Kulikovskikh,et al.  Unique condition for generalized Laguerre functions to solve pole position problem , 2015, Signal Process..

[21]  T. Oliveira e Silva,et al.  On the determination of the optimal pole position of Laguerre filters , 1995, IEEE Trans. Signal Process..

[22]  Chuan-Kang Ting,et al.  On the Mean Convergence Time of Multi-parent Genetic Algorithms Without Selection , 2005, ECAL.

[23]  Junghsi Lee,et al.  A fast recursive least squares adaptive second order Volterra filter and its performance analysis , 1993, IEEE Trans. Signal Process..

[24]  Una-May O'Reilly,et al.  Genetic Programming II: Automatic Discovery of Reusable Programs. , 1994, Artificial Life.

[25]  J. Ragot,et al.  Dynamic SISO and MISO system approximations based on optimal Laguerre models , 1998, IEEE Trans. Autom. Control..

[26]  G. Dumont,et al.  An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..

[27]  José Ragot,et al.  Decomposition of an ARX model on Laguerre orthonormal bases. , 2012, ISA transactions.

[28]  Albertus C. den Brinker,et al.  Optimality condition for truncated generalized laguerre networks , 1995, Int. J. Circuit Theory Appl..

[29]  Didier Maquin,et al.  Optimality conditions for the truncated network of the generalized discrete orthonormal basis having real poles , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[30]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex adaptive systems.

[31]  Lester S. H. Ngia Separable nonlinear least-squares methods for efficient off-line and on-line modeling of systems using Kautz and Laguerre filters , 2001 .