NEAR at eros: imaging and spectral results

Eros is a very elongated (34 kilometers by 11 kilometers by 11 kilometers) asteroid, most of the surface of which is saturated with craters smaller than 1 kilometer in diameter. The largest crater is 5.5 kilometers across, but there is a 10-kilometer saddle-like depression with attributes of a large degraded crater. Surface lineations, both grooves and ridges, are prominent on Eros; some probably exploit planes of weakness produced by collisions on Eros and/or its parent body. Ejecta blocks (30 to 100 meters across) are abundant but not uniformly distributed over the surface. Albedo variations are restricted to the inner walls of certain craters and may be related to downslope movement of regolith. On scales of 200 meters to 1 kilometer, Eros is more bland in terms of color variations than Gaspra or Ida. Spectra (800 to 2500 nanometers) are consistent with an ordinary chondrite composition for which the measured mean density of 2.67 +/- 0.1 grams per cubic centimeter implies internal porosities ranging from about 10 to 30 percent.

[1]  John B. Adams,et al.  Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. , 1967 .

[2]  N. S. Barnett,et al.  Private communication , 1969 .

[3]  E. Roemer,et al.  Minor planets and related objects. IV. Asteroid (1566) Icarus. , 1970 .

[4]  C. Chapman Surface properties of asteroids. , 1972 .

[5]  W. Egan,et al.  Photometric and polarimetric properties of the Bruderheim chondritic meteorite , 1973 .

[6]  David Morrison,et al.  Surface properties of asteroids - A synthesis of polarimetry, radiometry, and spectrophotometry , 1975 .

[7]  Gerhard Neukum,et al.  A study of lunar impact crater size-distributions , 1975 .

[8]  M. Gaffey,et al.  Spectrophotometry (0.33 to 1.07 μm) of 433 Eros and compositional implications , 1976 .

[9]  D. Morrison,et al.  J, H, K Photometry of 433 Eros and Other Asteroids , 1976 .

[10]  U. Fink,et al.  The infrared spectrum of asteroid 433 Eros , 1976 .

[11]  W. Wisniewski Spectrophotometry and UBVRI photometry of Eros , 1976 .

[12]  B. Zellner Physical properties of asteroid 433 Eros , 1976 .

[13]  J. Veverka,et al.  Grooves on asteroids: A prediction , 1979 .

[14]  C. M. Pieters,et al.  Strength of mineral absorption features in the transmitted component of near-infrared reflected light - First results from RELAB. [spectrogoniometer for planetary and lunar surface composition experiments] , 1983 .

[15]  J. Veverka,et al.  Phobos, Deimos, and the Moon: size and distribution of crater ejecta blocks , 1986 .

[16]  L. McFadden,et al.  CCD reflectance spectra of selected asteroids. I - Presentation and data analysis considerations , 1992 .

[17]  Carle M. Pieters,et al.  Optical effects of space weathering: The role of the finest fraction , 1993 .

[18]  G. Neukum,et al.  Cratering on Gaspra , 1993 .

[19]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[20]  Clark R. Chapman,et al.  Galileo Photometry of Asteroid 951 Gaspra , 1994 .

[21]  A. McEwen,et al.  Ida and Dactyl: Spectral reflectance and color variations , 1996 .

[22]  R. Sullivan,et al.  The Shape of Ida , 1996 .

[23]  R. Sullivan,et al.  Mechanical and geological effects of impact cratering on Ida , 1996 .

[24]  S. Ostro,et al.  Shape of Asteroid 433 Eros from Inversion of Goldstone Radar Doppler Spectra , 1996 .

[25]  R. Greeley,et al.  Ejecta Blocks on 243 Ida and on Other Asteroids , 1996 .

[26]  Daniel D. Durda,et al.  EROSION AND EJECTA REACCRETION ON 243 IDA AND ITS MOON , 1996 .

[27]  Gerhard Neukum,et al.  Cratering on Ida , 1996 .

[28]  Michael J. Elko,et al.  Multi-Spectral Imager on the Near Earth Asteroid Rendezvous Mission , 1997 .

[29]  Farquhar,et al.  Estimating the mass of asteroid 253 mathilde from tracking data during the NEAR flyby , 1997, Science.

[30]  Veverka,et al.  NEAR's flyby of 253 mathilde: images of a C asteroid , 1997, Science.

[31]  Clark R. Chapman,et al.  An overview of the NEAR multispectral imager-near-infrared spectrometer investigation , 1997 .

[32]  Richard D. Starr,et al.  Compositional mapping with the NEAR X ray/gamma ray spectrometer , 1997 .

[33]  Scott L. Murchie,et al.  Near Infrared Spectrometer for the Near Earth Asteroid Rendezvous Mission , 1997 .

[34]  D. Britt,et al.  The porosities of ordinary chondrites: Models and interpretation , 1998 .

[35]  Daniel T. Britt,et al.  The density and porosity of meteorites from the Vatican collection , 1998 .

[36]  Patrick Michel,et al.  Dynamics of Eros , 1998 .

[37]  P. Thomas Ejecta Emplacement on the Martian Satellites , 1998 .

[38]  P. Thomas,et al.  Cratering on Mathilde , 1999 .

[39]  Veverka,et al.  Imaging of asteroid 433 eros during NEAR's flyby reconnaissance , 1999, Science.

[40]  P. Thomas Large Craters on Small Objects: Occurrence, Morphology, and Effects , 1999 .

[41]  G. J. Flynn,et al.  Density and Porosity of Stone Meteorites: Implications for the Density, Porosity, Cratering, and Collisional Disruption of Asteroids , 1999 .

[42]  J. Burns,et al.  On a Possible Rotation State of (433) Eros , 1999 .

[43]  Clark R. Chapman,et al.  NEAR Encounter with Asteroid 253 Mathilde: Overview , 1999 .

[44]  Zuber,et al.  The shape of 433 eros from the NEAR-shoemaker laser rangefinder , 2000, Science.

[45]  Veverka,et al.  Radio science results during the NEAR-shoemaker spacecraft rendezvous with eros , 2000, Science.