High-degree cubature Kalman filter
暂无分享,去创建一个
Ming Xin | Bin Jia | Yang Cheng | Yang Cheng | Bin Jia | M. Xin
[1] A. Stroud,et al. Approximate integration formulas for certain spherically symmetric regions , 1963 .
[2] R. Piché,et al. Cubature-based Kalman filters for positioning , 2010, 2010 7th Workshop on Positioning, Navigation and Communication.
[3] Jordi Vilà-Valls,et al. Bayesian Nonlinear Filtering Using Quadrature and Cubature Rules Applied to Sensor Data Fusion for Positioning , 2010, 2010 IEEE International Conference on Communications.
[4] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[5] Nando de Freitas,et al. The Unscented Particle Filter , 2000, NIPS.
[6] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[7] R. Cools. Monomial cubature rules since “Stroud”: a compilation—part 2 , 1999 .
[8] S. Haykin,et al. Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.
[9] H. Sorenson,et al. Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .
[10] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[11] A. H. Stroud,et al. Some fifth degree integration formulas for symmetric regions , 1966 .
[12] Aubrey B. Poore,et al. Adaptive Gaussian Sum Filters for Space Surveillance , 2011, IEEE Transactions on Automatic Control.
[13] Srebra B. Stoyanova. Cubature formulae of the seventh degree of accuracy for the hypersphere , 1997 .
[14] Yang Cheng,et al. Sparse Gauss-Hermite Quadrature Filter with Application to Spacecraft Attitude Estimation , 2011 .
[15] Chao Li,et al. SCKF for MAV attitude estimation , 2011, 2011 International Conference on Machine Learning and Cybernetics.
[16] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[17] I. P. Mysovskikh. THE APPROXIMATION OF MULTIPLE INTEGRALS BY USING INTERPOLATORY CUBATURE FORMULAE , 1980 .
[18] A. H. Stroud,et al. Some fifth degree integration formulas for symmetric regions II , 1967 .
[19] S. Chakravorty,et al. A nonlinear filter based on Fokker-Planck equation , 2010, Proceedings of the 2010 American Control Conference.
[20] F. Daum. Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.
[21] Kazufumi Ito,et al. Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..
[22] Alan Genz,et al. Fully symmetric interpolatory rules for multiple integrals over hyper-spherical surfaces , 2003 .
[23] Subhash Challa,et al. Nonlinear filter design using Fokker-Planck-Kolmogorov probability density evolutions , 2000, IEEE Trans. Aerosp. Electron. Syst..
[24] Yuan Xu,et al. Orthogonal polynomials and cubature formulae on spheres and on simplices , 1998 .
[25] Ming Xin,et al. Sparse-grid quadrature nonlinear filtering , 2012, Autom..
[26] Ronald Cools,et al. An encyclopaedia of cubature formulas , 2003, J. Complex..
[27] Yuan Xu,et al. ORTHOGONAL POLYNOMIALS AND CUBATURE FORMULAE ON SPHERES AND ON BALLS , 1998 .
[28] Arthur Gelb,et al. Applied Optimal Estimation , 1974 .
[29] R. Cools,et al. Monomial cubature rules since “Stroud”: a compilation , 1993 .
[30] P. Silvester,et al. Symmetric Quadrature Formulae for Simplexes , 1970 .
[31] David L. Darmofal,et al. Higher-Dimensional Integration with Gaussian Weight for Applications in Probabilistic Design , 2005, SIAM J. Sci. Comput..
[32] Hugh F. Durrant-Whyte,et al. A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..
[33] John F. Monahan,et al. A stochastic algorithm for high-dimensional integrals over unbounded regions with Gaussian weight , 1999 .