High-degree cubature Kalman filter

The cubature Kalman filter (CKF), which is based on the third degree spherical-radial cubature rule, is numerically more stable than the unscented Kalman filter (UKF) but less accurate than the Gauss-Hermite quadrature filter (GHQF). To improve the performance of the CKF, a new class of CKFs with arbitrary degrees of accuracy in computing the spherical and radial integrals is proposed. The third-degree CKF is a special case of the class. The high-degree CKFs of the class can achieve the accuracy and stability performances close to those of the GHQF but at lower computational cost. A numerical integration problem and a target tracking problem are utilized to demonstrate the necessity of using the high-degree cubature rules to improve the performance. The target tracking simulation shows that the fifth-degree CKF can achieve higher accuracy than the extended Kalman filter, the UKF, the third-degree CKF, and the particle filter, and is computationally much more efficient than the GHQF.

[1]  A. Stroud,et al.  Approximate integration formulas for certain spherically symmetric regions , 1963 .

[2]  R. Piché,et al.  Cubature-based Kalman filters for positioning , 2010, 2010 7th Workshop on Positioning, Navigation and Communication.

[3]  Jordi Vilà-Valls,et al.  Bayesian Nonlinear Filtering Using Quadrature and Cubature Rules Applied to Sensor Data Fusion for Positioning , 2010, 2010 IEEE International Conference on Communications.

[4]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[5]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[6]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[7]  R. Cools Monomial cubature rules since “Stroud”: a compilation—part 2 , 1999 .

[8]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[9]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[10]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[11]  A. H. Stroud,et al.  Some fifth degree integration formulas for symmetric regions , 1966 .

[12]  Aubrey B. Poore,et al.  Adaptive Gaussian Sum Filters for Space Surveillance , 2011, IEEE Transactions on Automatic Control.

[13]  Srebra B. Stoyanova Cubature formulae of the seventh degree of accuracy for the hypersphere , 1997 .

[14]  Yang Cheng,et al.  Sparse Gauss-Hermite Quadrature Filter with Application to Spacecraft Attitude Estimation , 2011 .

[15]  Chao Li,et al.  SCKF for MAV attitude estimation , 2011, 2011 International Conference on Machine Learning and Cybernetics.

[16]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[17]  I. P. Mysovskikh THE APPROXIMATION OF MULTIPLE INTEGRALS BY USING INTERPOLATORY CUBATURE FORMULAE , 1980 .

[18]  A. H. Stroud,et al.  Some fifth degree integration formulas for symmetric regions II , 1967 .

[19]  S. Chakravorty,et al.  A nonlinear filter based on Fokker-Planck equation , 2010, Proceedings of the 2010 American Control Conference.

[20]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[21]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[22]  Alan Genz,et al.  Fully symmetric interpolatory rules for multiple integrals over hyper-spherical surfaces , 2003 .

[23]  Subhash Challa,et al.  Nonlinear filter design using Fokker-Planck-Kolmogorov probability density evolutions , 2000, IEEE Trans. Aerosp. Electron. Syst..

[24]  Yuan Xu,et al.  Orthogonal polynomials and cubature formulae on spheres and on simplices , 1998 .

[25]  Ming Xin,et al.  Sparse-grid quadrature nonlinear filtering , 2012, Autom..

[26]  Ronald Cools,et al.  An encyclopaedia of cubature formulas , 2003, J. Complex..

[27]  Yuan Xu,et al.  ORTHOGONAL POLYNOMIALS AND CUBATURE FORMULAE ON SPHERES AND ON BALLS , 1998 .

[28]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[29]  R. Cools,et al.  Monomial cubature rules since “Stroud”: a compilation , 1993 .

[30]  P. Silvester,et al.  Symmetric Quadrature Formulae for Simplexes , 1970 .

[31]  David L. Darmofal,et al.  Higher-Dimensional Integration with Gaussian Weight for Applications in Probabilistic Design , 2005, SIAM J. Sci. Comput..

[32]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[33]  John F. Monahan,et al.  A stochastic algorithm for high-dimensional integrals over unbounded regions with Gaussian weight , 1999 .