Single-strip triangulation of manifolds with arbitrary topology

This video illustrates a new method for subdividing the surface of a triangulated 3d polyhedron, without changing the geometry of the model, so that the triangles of the subdivided mesh can be ordered into a single triangle strip. Our method guarantees that the subdivided mesh has at most 3/2 the original number of triangles, and in practice performs much better. Our strips can be used not only for efficient rendering, but also for other applications including the generation of space filling curves.

[1]  Mike M. Chow,et al.  Optimized geometry compression for real-time rendering , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[2]  MagunJakob Greeding matching algorithms, an experimental study , 1998 .

[3]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[4]  Luiz Velho,et al.  Hierarchical generalized triangle strips , 1999, The Visual Computer.

[5]  Renato Pajarola,et al.  An image compression method for spatial search , 2000, IEEE Trans. Image Process..

[6]  Renato Pajarola,et al.  DStrips: dynamic triangle strips for real-time mesh simplification and rendering , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[7]  David Eppstein,et al.  Single‐Strip Triangulation of Manifolds with Arbitrary Topology , 2004, Comput. Graph. Forum.

[8]  Mikkel Thorup,et al.  Near-optimal fully-dynamic graph connectivity , 2000, STOC '00.

[9]  Renato Pajarola,et al.  DStrips: Dynamic Triangle Strips for Real-Time Mesh Simplification and Rendering Category: Scientific Research , 2003 .

[10]  A. James Stewart,et al.  Tunneling for Triangle Strips in Continuous Level--of--Detail Meshes , 2001, Graphics Interface.

[11]  Prosenjit Bose,et al.  Efficient algorithms for Petersen's matching theorem , 1999, SODA '99.

[12]  David Eppstein,et al.  Vertex-unfoldings of simplicial manifolds , 2002, SCG '02.

[13]  Brendan D. McKay,et al.  The smallest non-hamiltonian 3-connected cubic planar graphs have 38 vertices , 1988, J. Comb. Theory, Ser. B.

[14]  Jens Zimmermann,et al.  Parallelizing an Unstructured Grid Generator with a Space-Filling Curve Approach , 2000, Euro-Par.

[15]  Desh Ranjan,et al.  Space-Filling Curves and Their Use in the Design of Geometric Data Structures , 1997, Theor. Comput. Sci..

[16]  V. Pascucci,et al.  Global Static Indexing for Real-Time Exploration of Very Large Regular Grids , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[17]  Steven Skiena,et al.  Hamiltonian triangulations for fast rendering , 1996, The Visual Computer.

[18]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[19]  Richard Szeliski,et al.  Creating full view panoramic image mosaics and environment maps , 1997, SIGGRAPH.

[20]  Steven Skiena,et al.  Optimizing triangle strips for fast rendering , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[21]  J. Rossignac Edgebreaker: Compressing the incidence graph of triangle meshes , 1998 .

[22]  Craig Gotsman,et al.  Universal Rendering Sequences for Transparent Vertex Caching of Progressive Meshes , 2002, Comput. Graph. Forum.

[23]  J. Petersen Die Theorie der regulären graphs , 1891 .

[24]  Joseph S. B. Mitchell,et al.  Fast and effective stripification of polygonal surface models , 1999, SODA '99.

[25]  John W. Buchanan,et al.  Colour dithering using a space filling curve , 1995 .

[26]  M. S. Lu,et al.  Using Space Filling Curves for Ecient Contact Searching , 2000 .

[27]  Renato Pajarola,et al.  QuadTIN: quadtree based triangulated irregular networks , 2002, IEEE Visualization, 2002. VIS 2002..

[28]  Valerio Pascucci,et al.  Terrain Simplification Simplified: A General Framework for View-Dependent Out-of-Core Visualization , 2002, IEEE Trans. Vis. Comput. Graph..

[29]  Gabriel Taubin,et al.  Constructing Hamiltonian Triangle Strips on Quadrilateral Meshes , 2002, VisMath.

[30]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[31]  David Eppstein,et al.  The Traveling Salesman Problem for Cubic Graphs , 2003, J. Graph Algorithms Appl..

[32]  P. Sanders,et al.  On the Manhattan-Distance Between Points on Space-Filling Mesh-Indexings , 1996 .

[33]  Robert E. Webber,et al.  Space diffusion: an improved parallel halftoning technique using space-filling curves , 1993, SIGGRAPH.

[34]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[35]  Bettina Speckmann,et al.  Easy triangle strips for TIN terrain models , 2001, CCCG.

[36]  John J. Bartholdi,et al.  Continuous indexing of hierarchical subdivisions of the globe , 2001, Int. J. Geogr. Inf. Sci..

[37]  Mike M. Chow Optimized geometry compression for real-time rendering , 1997 .