On the moment problems

Sufficient conditions for a distribution to be moment-indeterminate are investigated. By applying the fundamental results of Hardy theory, we give an alternative proof of Akhiezer's (1965) result concerning the moment-indeterminacy for distributions supported on the whole real line. Secondly, we give a simpler proof but still based on Slud (1993), for a result concerning distributions supported on the half-line (0, [infinity]). Besides, sufficient conditions for a distribution to be moment-determinate are also investigated.