Manipulating polarized light with a planar slab of black phosphorus

Wave polarization contains valuable information for electromagnetic signal processing; thus, the ability to manipulate it, can be extremely useful in modeling photonic devices. In this work, we propose designs comprised of one of the emerging and interesting media: black phosphorus (BP). Due to substantial in-plane anisotropy, a single slab of BP can be very efficient for controlling the polarization state of electromagnetic waves. We investigate BP slabs that filter the fields along one direction, or achieve polarization axis rotation, or convert linear polarization to circular. These slabs can be employed as components in numerous mid-IR integrated structures.

[1]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[2]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[3]  A. Morita,et al.  Band structure and optical properties of black phosphorus , 1984 .

[4]  M. Kobayashi,et al.  Optical Determination of Dielectric Constant in Black Phosphorus , 1985 .

[5]  A. Morita,et al.  Semiconducting black phosphorus , 1986 .

[6]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[7]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[8]  Ken Ichi Arai,et al.  Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers , 1998 .

[9]  N I Zheludev,et al.  Polarization effects in the diffraction of light by a planar chiral structure. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[11]  T. Jiang,et al.  Manipulating electromagnetic wave polarizations by anisotropic metamaterials. , 2007, Physical review letters.

[12]  Weijia Wen,et al.  Tuning Fabry-Perot resonances via diffraction evanescent waves , 2007 .

[13]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[14]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  A. Tünnermann,et al.  Asymmetric transmission of linearly polarized light at optical metamaterials. , 2010, Physical review letters.

[16]  Zeyong Wei,et al.  Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators , 2011 .

[17]  A. Bostwick,et al.  Giant Faraday rotation in single- and multilayer graphene , 2010, 1007.5286.

[18]  Steve Serati,et al.  Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings. , 2011, Applied optics.

[19]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[20]  V. Kovanis,et al.  Luneburg lens waveguide networks , 2012, 1207.4337.

[21]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[22]  Ting Xu,et al.  All-angle negative refraction and active flat lensing of ultraviolet light , 2013, Nature.

[23]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[24]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[25]  E. Kaxiras,et al.  Electrically driven tuning of the dielectric constant in MoS2 layers. , 2013, ACS nano.

[26]  Zhen Tian,et al.  A perfect metamaterial polarization rotator , 2013 .

[27]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[28]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[29]  A. Jang,et al.  Stacking of Two-Dimensional Materials in Lateral and Vertical Directions , 2014 .

[30]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[31]  A S Rodin,et al.  Strain-induced gap modification in black phosphorus. , 2014, Physical review letters.

[32]  Jin-Wu Jiang Graphene versus MoS2: A short review , 2014, 1408.0437.

[33]  Y. Fainman,et al.  All-optical control of ferromagnetic thin films and nanostructures , 2014, Science.

[34]  Fengnian Xia,et al.  Plasmons and screening in monolayer and multilayer black phosphorus. , 2014, Physical review letters.

[35]  M. Dresselhaus,et al.  Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. , 2014, Nano letters.

[36]  Andrea Alù,et al.  Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions , 2014, Nature.

[37]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[38]  Wei Ji,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature communications.

[39]  Fengnian Xia,et al.  Recent Advances in Two-Dimensional Materials beyond Graphene. , 2015, ACS nano.

[40]  K. Thygesen,et al.  Dielectric Genome of van der Waals Heterostructures. , 2015, Nano letters.

[41]  Tie Jun Cui,et al.  Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces , 2016, Scientific Reports.

[42]  Marios Mattheakis,et al.  Epsilon-near-zero behavior from plasmonic Dirac point: Theory and realization using two-dimensional materials , 2016 .

[43]  G. P. Tsironis,et al.  Extreme events in complex linear and nonlinear photonic media , 2016 .

[44]  E. Kaxiras,et al.  Strain dependence of band gaps and exciton energies in pure and mixed transition-metal dichalcogenides , 2016 .

[45]  T. Low,et al.  Tunable plasmon-enhanced birefringence in ribbon array of anisotropic two-dimensional materials , 2017, 1701.06980.