Auxin control of embryo patterning.

Plants start their life as a single cell, which, during the process of embryogenesis, is transformed into a mature embryo with all organs necessary to support further growth and development. Therefore, each basic cell type is first specified in the early embryo, making this stage of development excellently suited to study mechanisms of coordinated cell specification-pattern formation. In recent years, it has emerged that the plant hormone auxin plays a prominent role in embryo development. Most pattern formation steps in the early Arabidopsis embryo depend on auxin biosynthesis, transport, and response. In this article, we describe those embryo patterning steps that involve auxin activity, and we review recent data that shed light on the molecular mechanisms of auxin action during this phase of plant development.

[1]  Michael Sauer,et al.  Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis , 2003, Nature.

[2]  Elliot M. Meyerowitz,et al.  Antagonistic Regulation of PIN Phosphorylation by PP2A and PINOID Directs Auxin Flux , 2007, Cell.

[3]  Klaus Palme,et al.  A PINOID-Dependent Binary Switch in Apical-Basal PIN Polar Targeting Directs Auxin Efflux , 2004, Science.

[4]  E. Meyerowitz,et al.  TOPLESS Regulates Apical Embryonic Fate in Arabidopsis , 2006, Science.

[5]  Masashi Yamada,et al.  Plant development is regulated by a family of auxin receptor F box proteins. , 2005, Developmental cell.

[6]  J. Alvarez,et al.  Morphogenesis in pinoid mutants of Arabidopsis thaliana , 1995 .

[7]  K. Ljung,et al.  Maintenance of Embryonic Auxin Distribution for Apical-Basal Patterning by PIN-FORMED–Dependent Auxin Transport in Arabidopsisw⃞ , 2005, The Plant Cell Online.

[8]  M. Estelle,et al.  Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis. , 2002, Molecular biology of the cell.

[9]  Yunde Zhao,et al.  Auxin Synthesized by the YUCCA Flavin Monooxygenases Is Essential for Embryogenesis and Leaf Formation in Arabidopsis[W] , 2007, The Plant Cell Online.

[10]  G. Jürgens,et al.  The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. , 2002, Genes & development.

[11]  John Chandler,et al.  DORNRÖSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo , 2009, Development.

[12]  Michal Sharon,et al.  Mechanism of auxin perception by the TIR1 ubiquitin ligase , 2007, Nature.

[13]  Joanne Chory,et al.  Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants , 2008, Cell.

[14]  G. Neuhaus,et al.  Auxin-induced developmental patterns in Brassica juncea embryos. , 1998, Development.

[15]  I. Hwang,et al.  Clathrin-Mediated Constitutive Endocytosis of PIN Auxin Efflux Carriers in Arabidopsis , 2007, Current Biology.

[16]  G. Jürgens,et al.  Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation , 2003, Cell.

[17]  Prof. Dr. Brij M. Johri,et al.  Comparative Embryology of Angiosperms , 1992, Springer Berlin Heidelberg.

[18]  Ari Pekka Mähönen,et al.  Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions , 2008, Nature.

[19]  J. Bowman,et al.  KANADI and Class III HD-Zip Gene Families Regulate Embryo Patterning and Modulate Auxin Flow during Embryogenesis in Arabidopsis[W][OA] , 2007, The Plant Cell Online.

[20]  Hong Ma,et al.  The ASK1 and ASK2 Genes Are Essential for Arabidopsis Early Development Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.017772. , 2004, The Plant Cell Online.

[21]  Heiko Schoof,et al.  Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem , 1998, Cell.

[22]  M. Sauer,et al.  ARF GEF-Dependent Transcytosis and Polar Delivery of PIN Auxin Carriers in Arabidopsis , 2008, Current Biology.

[23]  J. Reed,et al.  A gain-of-function mutation in IAA18 alters Arabidopsis embryonic apical patterning , 2009, Development.

[24]  T. Laux,et al.  Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. , 2008, Developmental cell.

[25]  E. Meyerowitz,et al.  Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus. , 2002, Development.

[26]  S. Shiu,et al.  The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Mansfield,et al.  Early embryogenesis in Arabidopsis thaliana. I, The mature embryo sac , 1991 .

[28]  G. Hagen,et al.  Activation and repression of transcription by auxin-response factors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Renze Heidstra,et al.  PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development , 2007, Nature.

[30]  M. Estelle,et al.  AXL and AXR1 have redundant functions in RUB conjugation and growth and development in Arabidopsis. , 2007, The Plant journal : for cell and molecular biology.

[31]  Yunde Zhao,et al.  NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis , 2008, Proceedings of the National Academy of Sciences.

[32]  W. Lukowitz,et al.  Embryonic patterning in Arabidopsis thaliana. , 2007, Annual review of cell and developmental biology.

[33]  G. Jürgens,et al.  Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. , 1994, Development.

[34]  G. Jürgens,et al.  The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. , 1999, Development.

[35]  S. Tabata,et al.  The Arabidopsis OBERON1 and OBERON2 genes encode plant homeodomain finger proteins and are required for apical meristem maintenance , 2008, Development.

[36]  G. Jürgens,et al.  The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo , 1993 .

[37]  Anna N. Stepanova,et al.  TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development , 2008, Cell.

[38]  D. Weijers,et al.  The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. , 2001, Development.

[39]  T. Laux,et al.  Embryogenesis: A New Start in Life. , 1997, The Plant cell.

[40]  T. Laux,et al.  Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana , 2004, Development.

[41]  H Fujisawa,et al.  Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. , 1997, The Plant cell.

[42]  G. Jürgens,et al.  Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. , 2006, Developmental cell.

[43]  T. Vernoux,et al.  PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis , 2004, Development.

[44]  A. Nakano,et al.  The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth , 2003, Cell.

[45]  T. Vernoux,et al.  Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. , 2002, Development.

[46]  M. Aida,et al.  Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. , 1999, Development.

[47]  S. Mansfield,et al.  Early embryogenesis in Arabidopsis thaliana. II. The developing embryo , 1991 .

[48]  M. Estelle,et al.  Role of the Arabidopsis RING-H2 Protein RBX1 in RUB Modification and SCF Function Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003178. , 2002, The Plant Cell Online.

[49]  Ottoline Leyser,et al.  The Arabidopsis F-box protein TIR1 is an auxin receptor , 2005, Nature.

[50]  R. Amasino,et al.  The PLETHORA Genes Mediate Patterning of the Arabidopsis Root Stem Cell Niche , 2004, Cell.

[51]  G. Jürgens Axis formation in plant embryogenesis: Cues and clues , 1995, Cell.

[52]  M. Estelle,et al.  The F-box protein TIR1 is an auxin receptor , 2005, Nature.

[53]  N. Chua,et al.  Auxin Polar Transport Is Essential for the Establishment of Bilateral Symmetry during Early Plant Embryogenesis. , 1993, The Plant cell.

[54]  G. Hagen,et al.  The Roles of Auxin Response Factor Domains in Auxin-Responsive Transcription Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.008417. , 2003, The Plant Cell Online.

[55]  J. Long,et al.  TOPLESS Mediates Auxin-Dependent Transcriptional Repression During Arabidopsis Embryogenesis , 2008, Science.

[56]  J. Chandler,et al.  The AP2 transcription factors DORNRÖSCHEN and DORNRÖSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA , 2007, Development.

[57]  M. Estelle,et al.  The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis , 2003, The EMBO journal.

[58]  E. Bayer,et al.  Arabidopsis plant homeodomain finger proteins operate downstream of auxin accumulation in specifying the vasculature and primary root meristem. , 2009, The Plant journal : for cell and molecular biology.

[59]  R. Poethig,et al.  Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant , 1993 .

[60]  G. Jürgens,et al.  Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene , 1993 .