Cellular Automata with Majority Rule on Evolving Network
暂无分享,去创建一个
[1] Moshe Gitterman,et al. Small-world phenomena in physics: the Ising model , 2000 .
[2] Albert-László Barabási,et al. Statistical mechanics of complex networks , 2001, ArXiv.
[3] Pontus Svenson,et al. Damage spreading in small world Ising models. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[4] A. Fisher,et al. The Theory of critical phenomena , 1992 .
[5] Mark E. J. Newman,et al. The Structure and Function of Complex Networks , 2003, SIAM Rev..
[6] Raúl Toral,et al. Nonequilibrium transitions in complex networks: a model of social interaction. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[7] S. N. Dorogovtsev,et al. Critical phenomena in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[8] D. Stauffer,et al. SIMULATION OF CONSENSUS MODEL OF DEFFUANT et al. ON A BARABÁSI–ALBERT NETWORK , 2004 .
[9] A. Heuer,et al. 過冷却Lennard‐Jones流体におけるホッピング:準ベイスン,待ち時間分布および拡散 , 2003 .
[10] M. A. Novotny,et al. Algorithmic scalability in globally constrained conservative parallel discrete event simulations of asynchronous systems , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] Cristopher Moore,et al. Disease spreading and percolation in small-world networks , 1999 .
[12] James P. Crutchfield,et al. Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..
[13] Illés J. Farkas,et al. Equilibrium Statistical Mechanicsof Network Structures , 2004 .
[14] M. A. Novotny,et al. On the Possibility of Quasi Small-World Nanomaterials , 2003 .
[15] M. Newman. Spread of epidemic disease on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] Geoffrey Grinstein,et al. Can complex structures be generically stable in a noisy world? , 2004, IBM J. Res. Dev..
[17] J. Lebowitz,et al. Statistical mechanics of probabilistic cellular automata , 1990 .
[18] D. Stauffer,et al. Ferromagnetic phase transition in Barabási–Albert networks , 2001, cond-mat/0112312.
[19] Duncan J. Watts,et al. Collective dynamics of ‘small-world’ networks , 1998, Nature.
[20] A. Louisa,et al. コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .
[21] M. Newman,et al. Epidemics and percolation in small-world networks. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[22] Danuta Makowiec,et al. Universality Class of Probabilistic Cellular Automata , 2002, ACRI.
[23] M. Kuperman,et al. Small world effect in an epidemiological model. , 2000, Physical review letters.
[24] Hans J. Herrmann,et al. Fast simulation of the Ising model using cellular automata , 1991 .
[25] I. Farkas,et al. Equilibrium statistical mechanics of network structures , 2004 .