New preconditioners for saddle point problems

We present new preconditioners based on matrix splittings for the saddle point problems. The spectral property of one of the preconditioned matrix is studied in detail. Numerical examples are used to illustrate the efficiency of the new preconditioners.

[1]  Philip E. Gill,et al.  Practical optimization , 1981 .

[2]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[3]  Jinxi Zhao,et al.  The generalized Cholesky factorization method for saddle point problems , 1998, Appl. Math. Comput..

[4]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[5]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[6]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[7]  Michele Benzi,et al.  Spectral Properties of the Hermitian and Skew-Hermitian Splitting Preconditioner for Saddle Point Problems , 2005, SIAM J. Matrix Anal. Appl..

[8]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[9]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[10]  Gene H. Golub,et al.  An Iteration for Indefinite Systems and Its Application to the Navier-Stokes Equations , 1998, SIAM J. Sci. Comput..

[11]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[12]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[13]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[14]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[15]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[16]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[17]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.