New preconditioners for saddle point problems
暂无分享,去创建一个
Michael K. Ng | Zhong-Zhi Bai | Jianyu Pan | M. Ng | Z. Bai | Jianyu Pan
[1] Philip E. Gill,et al. Practical optimization , 1981 .
[2] H. H. Rachford,et al. The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .
[3] Jinxi Zhao,et al. The generalized Cholesky factorization method for saddle point problems , 1998, Appl. Math. Comput..
[4] R. Glowinski. Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .
[5] Gilbert Strang,et al. Introduction to applied mathematics , 1988 .
[6] Gene H. Golub,et al. A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..
[7] Michele Benzi,et al. Spectral Properties of the Hermitian and Skew-Hermitian Splitting Preconditioner for Saddle Point Problems , 2005, SIAM J. Matrix Anal. Appl..
[8] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[9] Apostol T. Vassilev,et al. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .
[10] Gene H. Golub,et al. An Iteration for Indefinite Systems and Its Application to the Navier-Stokes Equations , 1998, SIAM J. Sci. Comput..
[11] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .
[12] Gene H. Golub,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[13] Gene H. Golub,et al. Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..
[14] Anil V. Rao,et al. Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .
[15] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[16] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[17] Gene H. Golub,et al. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.