Representing model uncertainty using the multiparametrization method

Model error is now recognize as an important source of uncert ainty in Numerical Weather Prediction. Several approaches have been proposed to represent model uncertain ty in Ensemble Prediction Systems. The multiparametrization technique is based on the use of several phy sical parametrization schemes in the same forecast model to account for model errors. After a short description of the multiparametrization approach basis, its implementation and effects on the Météo-France Ensemble Pr ediction System are addressed.

[1]  H. Charnock Wind stress on a water surface , 1955 .

[2]  O. Talagrand,et al.  Evaluation of probabilistic prediction systems for a scalar variable , 2005 .

[3]  Renate Hagedorn,et al.  Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part II: Precipitation , 2008 .

[4]  P. L. Houtekamer,et al.  Toward Random Sampling of Model Error in the Canadian Ensemble Prediction System , 2010 .

[5]  T. Palmer A nonlinear dynamical perspective on model error: A proposal for non‐local stochastic‐dynamic parametrization in weather and climate prediction models , 2001 .

[6]  P. L. Houtekamer,et al.  A System Simulation Approach to Ensemble Prediction , 1996 .

[7]  Renate Hagedorn,et al.  Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part I: Two-Meter Temperatures , 2008 .

[8]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[9]  P. Bougeault,et al.  A Simple Parameterization of the Large-Scale Effects of Cumulus Convection , 1985 .

[10]  Jf. Geleyn,et al.  Use of a Modified Richardson Number for Parameterizing the Effect of Shallow Convection , 1986 .

[11]  K. Emanuel,et al.  The Representation of Cumulus Convection in Numerical Models , 1993 .

[12]  P. L. Houtekamer,et al.  Verification of an Ensemble Prediction System against Observations , 2007 .

[13]  Renate Hagedorn,et al.  The rationale behind the success of multi-model ensembles in seasonal forecasting — I. Basic concept , 2005 .

[14]  David J. Stensrud,et al.  Using Initial Condition and Model Physics Perturbations in Short-Range Ensemble Simulations of Mesoscale Convective Systems , 2000 .

[15]  Brian A. Colle,et al.  Evaluation of a Mesoscale Short-Range Ensemble Forecast System over the Northeast United States , 2007 .

[16]  T. Palmer,et al.  Stochastic parametrization and model uncertainty , 2009 .

[17]  Leonard A. Smith,et al.  Uncertainty in predictions of the climate response to rising levels of greenhouse gases , 2005, Nature.

[18]  E. Bazile,et al.  A mass‐flux convection scheme for regional and global models , 2001 .

[19]  J. Dudhia A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .

[20]  M. Webb,et al.  Quantification of modelling uncertainties in a large ensemble of climate change simulations , 2004, Nature.

[21]  J. Redelsperger,et al.  A turbulence scheme allowing for mesoscale and large‐eddy simulations , 2000 .

[22]  Chris Snyder,et al.  The U.S. Air ForceWeather Agency’s mesoscale ensemble: scientific description and performance results , 2011 .