Recurrent Self-Organizing Map for Severe Weather Patterns Recognition

Weather patterns recognition is very important to improve forecasting skills regarding severe storm conditions over a given area of the Earth. Severe weather can damage electric and telecommunication systems, besides generating material losses and even losses of life (Cooray et al., 2007; Lo Piparo, 2010; Santos et al., 2011). In especial for the electrical sector, is strategic to recognize weather patterns that may help predict weather caused damages. Severe weather forecast is crucial to reduce permanent damage to the systems equipments and outages in transmission or distribution lines.

[1]  Vernon Cooray,et al.  Lightning caused injuries in humans , 2007 .

[2]  Jukka Heikkonen,et al.  Recurrent SOM with local linear models in time series prediction , 1998, ESANN.

[3]  Hubert Cardot,et al.  SOM time series clustering and prediction with recurrent neural networks , 2011, Neurocomputing.

[4]  Randy A. Peppier A REVIEW OF STATIC STABILITY INDICES AND RELATED THERMODYNAMIC PARAMETERS , 1988 .

[5]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[6]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[7]  Hisashi Shimodaira,et al.  Time-Series Prediction , 2002 .

[8]  John G. Taylor,et al.  The temporal Kohönen map , 1993, Neural Networks.

[9]  Agostino Manzato,et al.  Sounding-derived indices for neural network based short-term thunderstorm and rainfall forecasts , 2007 .

[10]  Shian-Chang Huang,et al.  Integrating recurrent SOM with wavelet-based kernel partial least square regressions for financial forecasting , 2010, Expert Syst. Appl..

[11]  H. Fuelberg,et al.  A Statistical Procedure to Forecast Warm Season Lightning over Portions of the Florida Peninsula , 2006 .

[12]  Jukka Heikkonen,et al.  Time Series Predicition using Recurrent SOM with Local Linear Models , 1997 .

[13]  Noureddine Ellouze,et al.  Principal temporal extensions of SOM: Overview , 2009 .

[14]  Barbara Hammer,et al.  Merge SOM for temporal data , 2005, Neurocomputing.

[15]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[16]  R. Jayaratne Thunderstorm electrification mechanisms , 2003 .

[17]  Thomas Voegtlin,et al.  Recursive self-organizing maps , 2002, Neural Networks.

[18]  Jouko Lampinen,et al.  Temporal Kohonen Map and the Recurrent Self-Organizing Map: Analytical and Experimental Comparison , 2004, Neural Processing Letters.

[19]  Jouko Lampinen,et al.  Analytical comparison of the Temporal Kohonen Map and the Recurrent Self Organizing Map , 2000, ESANN.

[20]  Alessio Micheli,et al.  Recursive self-organizing network models , 2004, Neural Networks.

[21]  A. Manzato A Verification of Numerical Model Forecasts for Sounding-Derived Indices above Udine, Northeast Italy , 2008 .

[22]  Hujun Yin,et al.  Exchange rate prediction using hybrid neural networks and trading indicators , 2009, Neurocomputing.

[23]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[24]  Earle Williams Charge structure and geographical variation of thunderclouds , 2003 .

[26]  Ah Chung Tsoi,et al.  A self-organizing map for adaptive processing of structured data , 2003, IEEE Trans. Neural Networks.

[27]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[28]  M. Shaw HOW TO REFERENCE , 2004 .

[29]  V. Rakov,et al.  Lightning: Physics and Effects , 2007 .

[30]  G. B. Piparo Lightning protection of telecommunication towers , 2010 .