Dynamic decomposition of spatiotemporal neural signals

Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals.

[1]  C. J. Stam,et al.  Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? , 2004, Neuroscience Letters.

[2]  Randy L. Buckner,et al.  Unrest at rest: Default activity and spontaneous network correlations , 2007, NeuroImage.

[3]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[4]  B. Connors,et al.  Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. , 1991, Science.

[5]  Ronald P. Barry,et al.  Spatiotemporal Autoregressive Models of Neighborhood Effects , 1998 .

[6]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[7]  John J. Foxe,et al.  The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention , 2011, Front. Psychology.

[8]  M. Kahana,et al.  Phase–Amplitude Coupling in Human Electrocorticography Is Spatially Distributed and Phase Diverse , 2012, The Journal of Neuroscience.

[9]  Viktor K. Jirsa,et al.  Noise during Rest Enables the Exploration of the Brain's Dynamic Repertoire , 2008, PLoS Comput. Biol..

[10]  M. Breakspear,et al.  Bistability and Non-Gaussian Fluctuations in Spontaneous Cortical Activity , 2009, The Journal of Neuroscience.

[11]  Ronald Dickman,et al.  Path integrals and perturbation theory for stochastic processes , 2002 .

[12]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[13]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[14]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[15]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[16]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[17]  Thomas R. Knösche,et al.  Spatio-temporal Regularization in Linear Distributed Source Reconstruction from EEG/MEG: A Critical Evaluation , 2013, Brain Topography.

[18]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[19]  Marcel A. J. van Gerven,et al.  Regularizing Solutions to the MEG Inverse Problem Using Space-Time Separable Covariance Functions , 2016, 1604.04931.

[20]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[21]  A. Nobre,et al.  Alpha Oscillations Related to Anticipatory Attention Follow Temporal Expectations , 2011, The Journal of Neuroscience.

[22]  W. Klimesch,et al.  EEG alpha oscillations: The inhibition–timing hypothesis , 2007, Brain Research Reviews.

[23]  G. Nolte The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. , 2003, Physics in medicine and biology.

[24]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[25]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[26]  Eric Maris,et al.  Uncovering phase‐coupled oscillatory networks in electrophysiological data , 2015, Human brain mapping.

[27]  Christopher J Paciorek,et al.  Bayesian Smoothing with Gaussian Processes Using Fourier Basis Functions in the spectralGP Package. , 2007, Journal of statistical software.

[28]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[29]  D. Cheyne MEG studies of sensorimotor rhythms: A review , 2013, Experimental Neurology.

[30]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[31]  Nico Sneeuw,et al.  Performance Analysis of Isotropic Spherical Harmonic Spectral Windows , 2012 .

[32]  N. Thakor,et al.  Spectral analysis methods for neurological signals , 1998, Journal of Neuroscience Methods.

[33]  D. Sornette,et al.  Epileptic seizures: Quakes of the brain? , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Margot J. Taylor,et al.  Brain noise is task dependent and region specific. , 2010, Journal of neurophysiology.

[35]  M. Fuchs,et al.  Spatio-Temporal Current Density Reconstruction (stCDR) from EEG/MEG-Data , 2004, Brain Topography.

[36]  E. Basar,et al.  Review of delta, theta, alpha, beta, and gamma response oscillations in neuropsychiatric disorders. , 2013, Supplements to Clinical neurophysiology.

[37]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[38]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[39]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[40]  N. Kanwisher,et al.  Neuroimaging of cognitive functions in human parietal cortex , 2001, Current Opinion in Neurobiology.

[41]  L. Ricciardi,et al.  The Ornstein-Uhlenbeck process as a model for neuronal activity , 1979, Biological Cybernetics.

[42]  A. Engel,et al.  Beta-band oscillations—signalling the status quo? , 2010, Current Opinion in Neurobiology.

[43]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[44]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[45]  Viktor Jirsa,et al.  Multistability in large scale models of brain activity , 2013, BMC Neuroscience.

[46]  J. Vrba,et al.  Signal processing in magnetoencephalography. , 2001, Methods.

[47]  Simo Särkkä,et al.  Infinite-Dimensional Kalman Filtering Approach to Spatio-Temporal Gaussian Process Regression , 2012, AISTATS.

[48]  M. Greicius,et al.  Resting-state functional connectivity reflects structural connectivity in the default mode network. , 2009, Cerebral cortex.

[49]  J. Schoffelen,et al.  Prestimulus Oscillatory Activity in the Alpha Band Predicts Visual Discrimination Ability , 2008, The Journal of Neuroscience.

[50]  H. Groemer Geometric Applications of Fourier Series and Spherical Harmonics , 1996 .

[51]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[52]  A ReyesS,et al.  PT-対称性光学導波路におけるLandau-Zener-Stueckelberg干渉法 , 2012 .

[53]  P. Uhlhaas,et al.  Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? , 2014, Trends in Cognitive Sciences.

[54]  Martin Luessi,et al.  MNE software for processing MEG and EEG data , 2014, NeuroImage.

[55]  P. Bressloff Spatiotemporal dynamics of continuum neural fields , 2012 .

[56]  Simon Hanslmayr,et al.  EEG alpha oscillations in the preparation for global and local processing predict behavioral performance , 2009, Human brain mapping.

[57]  Martin J. Mohlenkamp A fast transform for spherical harmonics , 1997 .

[58]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[59]  E. Maris,et al.  Beyond establishing involvement: quantifying the contribution of anticipatory α- and β-band suppression to perceptual improvement with attention. , 2012, Journal of neurophysiology.

[60]  Viviana Betti,et al.  Natural Scenes Viewing Alters the Dynamics of Functional Connectivity in the Human Brain , 2013, Neuron.

[61]  John J. Foxe,et al.  Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. , 2006, Journal of neurophysiology.

[62]  R. Vautard,et al.  Singular-spectrum analysis: a toolkit for short, noisy chaotic signals , 1992 .

[63]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[64]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[65]  Evgueniy V. Lubenov,et al.  Hippocampal theta oscillations are travelling waves , 2009, Nature.

[66]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[67]  E. Maris,et al.  Orienting Attention to an Upcoming Tactile Event Involves a Spatially and Temporally Specific Modulation of Sensorimotor Alpha- and Beta-Band Oscillations , 2011, The Journal of Neuroscience.

[68]  A. Dawid Some matrix-variate distribution theory: Notational considerations and a Bayesian application , 1981 .

[69]  Yury Petrov,et al.  Harmony: EEG/MEG Linear Inverse Source Reconstruction in the Anatomical Basis of Spherical Harmonics , 2012, PloS one.

[70]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[71]  S. Särkkä,et al.  Infinite-dimensional Bayesian filtering for detection of quasiperiodic phenomena in spatiotemporal data. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  W. Wildman,et al.  Theoretical Neuroscience , 2014 .

[73]  Kuno Kirschfeld Alpha Waves: A new tool to investigate visual attention with high temporal resolution , 2005 .

[74]  Nelson J. Trujillo-Barreto,et al.  Bayesian M/EEG source reconstruction with spatio-temporal priors , 2008, NeuroImage.

[75]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[76]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[77]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[78]  D. Lehmann,et al.  Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. , 2002, Methods and findings in experimental and clinical pharmacology.

[79]  Thomas P. Bronez,et al.  On the performance advantage of multitaper spectral analysis , 1992, IEEE Trans. Signal Process..