Carlitz's q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions

In this paper, we systematically recover the identities for the q-eta numbers @h"k and the q-eta polynomials @h"k(x), presented by Carlitz [L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948) 987-1000], which we define here via generating series rather than via the difference equations of Carlitz. Following a method developed by Kaneko et al. [M. Kaneko, N. Kurokawa, M. Wakayama, A variation of Euler's approach to the Riemann zeta function, Kyushu J. Math. 57 (2003) 175-192] for a canonical q-extension of the Riemann zeta function, we investigate a similarly constructed q-extension of the Hurwitz zeta function. The details of this investigation disclose some interesting connections among q-eta polynomials, Carlitz's q-Bernoulli polynomials @b"k(x),@e-polynomials, and the q-Bernoulli polynomials that emerge from the q-extension of the Hurwitz zeta function discussed here.

[1]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[2]  Leonard Carlitz,et al.  On abelian fields , 1933 .

[3]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[4]  Masanobu Kaneko,et al.  A VARIATION OF EULER'S APPROACH TO VALUES OF THE RIEMANN ZETA FUNCTION , 2002 .

[5]  S. Lang Number Theory III , 1991 .

[6]  Hari M. Srivastava,et al.  Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function , 2008, Appl. Math. Comput..

[7]  Andrzej Dabrowski A Note onp-Adicq-ζ-Functions , 1997 .

[8]  Cheon Seoung Ryoo A note on q-Bernoulli numbers and polynomials , 2007, Appl. Math. Lett..

[9]  Taekyun Kim,et al.  On aq-Analogue of thep-Adic Log Gamma Functions and Related Integrals , 1999 .

[10]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions , 1920, Nature.

[11]  Junya Satoh,et al.  q-Analogue of Riemann's ζ-function and q-Euler numbers , 1989 .

[12]  Leonard Carlitz,et al.  $q$-Bernoulli numbers and polynomials , 1948 .

[13]  Hari M. Srivastava,et al.  Remarks on some relationships between the Bernoulli and Euler polynomials , 2004, Appl. Math. Lett..

[14]  F. H. Jackson q-Difference Equations , 1910 .

[15]  Morgan Ward,et al.  A Calculus of Sequences , 1936 .

[16]  Masato Wakayama,et al.  Integral Representations of q-analogues of the Hurwitz Zeta Function , 2006 .

[17]  Nobushige Kurokawa,et al.  Multiple q-Mahler measures and zeta functions , 2007 .

[18]  Hirofumi Tsumura,et al.  A note on q-analogues of the Dirichlet series and q-Bernoulli numbers , 1991 .

[19]  Hirofumi Tsumura A note on $q$-analogues of Dirichlet series , 1999 .

[20]  Anne de Médicis,et al.  A unified combinatorial approach for q- (and p,q-) Stirling numbers , 1993 .

[21]  Taekyun Kim q-Euler numbers and polynomials associated with p-adic q-integrals , 2007 .

[22]  Y. Simsek,et al.  $q$-Bernoulli Numbers and Polynomials Associated with Multiple $q$-Zeta Functions and Basic $L$-series , 2005, math/0502019.

[23]  Kazuya Kato,et al.  Number Theory 1 , 1999 .

[24]  Stephen C. Milne Mappings of Subspaces into Subsets , 1982, J. Comb. Theory, Ser. A.

[25]  Leonard Carlitz,et al.  $q$-Bernoulli and Eulerian numbers , 1954 .

[26]  Michitomo Nishizawa,et al.  Quantum groups and zeta functions , 1994 .

[27]  Jianqiang Zhao Multiple q-zeta functions and multiple q-polylogarithms , 2007 .

[28]  Taekyun Kim q-Riemann zeta function , 2004, Int. J. Math. Math. Sci..

[29]  Niels Nielsen,et al.  Traité élémentaire des nombres de Bernoulli , 1924 .

[30]  Yilmaz Simsek,et al.  A new extension of q-Euler numbers and polynomials related to their interpolation functions , 2008, Appl. Math. Lett..

[31]  Taekyun Kim,et al.  A note on p-adic Carlitz's q-Bernoulli numbers , 2000, Bulletin of the Australian Mathematical Society.

[32]  Hirofumi Tsumura On Evaluation of the Dirichlet Series at Positive Integers by q-Calculation , 1994 .

[33]  Ivan Cherednik,et al.  On q-analogues of Riemann's zeta function , 2001 .

[34]  Hari M. Srivastava,et al.  Series Associated with the Zeta and Related Functions , 2001 .

[35]  Neal Koblitz,et al.  On Carlitz's q-Bernoulli numbers , 1982 .

[36]  Don Rawlings,et al.  BERNOULLI TRIALS AND NUMBER THEORY , 1994 .