Convergence rates for empirical barycenters in metric spaces: curvature, convexity and extendable geodesics
暂无分享,去创建一个
[1] P. Bartlett,et al. Empirical minimization , 2006 .
[2] C. Schotz,et al. Convergence rates for the generalized Fréchet mean via the quadruple inequality , 2018, Electronic Journal of Statistics.
[3] V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0083.
[4] Thibaut Le Gouic,et al. Distribution's template estimate with Wasserstein metrics , 2011, 1111.5927.
[5] A. Petrunin. Semiconcave Functions in Alexandrov???s Geometry , 2013, 1304.0292.
[6] Shin-Ichi Ohta,et al. Barycenters in Alexandrov spaces of curvature bounded below , 2012 .
[7] P. Massart. Some applications of concentration inequalities to statistics , 2000 .
[8] Takumi Yokota. Convex functions and barycenter on CAT(1)-Spaces of small radii , 2016 .
[9] P. Bartlett,et al. Local Rademacher complexities , 2005, math/0508275.
[10] Karl-Theodor Sturm,et al. Probability Measures on Metric Spaces of Nonpositive Curvature , 2003 .
[11] Shahar Mendelson,et al. Improving the sample complexity using global data , 2002, IEEE Trans. Inf. Theory.
[12] Shun-ichi Amari,et al. Information Geometry and Its Applications , 2016 .
[13] Filippo Santambrogio,et al. Optimal Transport for Applied Mathematicians , 2015 .
[14] Shahar Mendelson,et al. Learning without Concentration , 2014, COLT.
[15] Shin-ichi Ohta,et al. Convexities of metric spaces , 2007 .
[16] Karthik Sridharan,et al. Empirical Entropy, Minimax Regret and Minimax Risk , 2013, ArXiv.
[17] S. Graf,et al. Foundations of Quantization for Probability Distributions , 2000 .
[18] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.
[19] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[20] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[21] M. Bridson,et al. Metric Spaces of Non-Positive Curvature , 1999 .
[22] M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .
[23] Michael I. Jordan,et al. Convexity, Classification, and Risk Bounds , 2006 .
[24] Jonathan Weed,et al. Statistical Optimal Transport via Factored Couplings , 2018, AISTATS.
[25] M. Talagrand. New concentration inequalities in product spaces , 1996 .
[26] R. Nickl,et al. Mathematical Foundations of Infinite-Dimensional Statistical Models , 2015 .
[27] Thibaut Le Gouic,et al. Existence and consistency of Wasserstein barycenters , 2015, Probability Theory and Related Fields.
[28] Alexander Gasnikov,et al. Computational Optimal Transport: Complexity by Accelerated Gradient Descent Is Better Than by Sinkhorn's Algorithm , 2018, ICML.
[29] L. L. Cam,et al. Asymptotic Methods In Statistical Decision Theory , 1986 .
[30] Guillaume Carlier,et al. Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..
[31] Jérémie Bigot,et al. Upper and lower risk bounds for estimating the Wasserstein barycenter of random measures on the real line , 2018 .
[32] D. Burago,et al. A Course in Metric Geometry , 2001 .
[33] A note on flatness of non separable tangent cone at a barycenter , 2019, 1906.11536.
[34] B. Afsari. Riemannian Lp center of mass: existence, uniqueness, and convexity , 2011 .
[35] Takumi Yokota. A rigidity theorem in Alexandrov spaces with lower curvature bound , 2009, 0912.0114.
[36] H. Karcher. Riemannian Center of Mass and so called karcher mean , 2014, 1407.2087.
[37] G. Lugosi,et al. Near-optimal mean estimators with respect to general norms , 2018, Probability Theory and Related Fields.
[38] Bruno Pelletier,et al. Informative barycentres in statistics , 2005 .
[39] R. Bhattacharya,et al. LARGE SAMPLE THEORY OF INTRINSIC AND EXTRINSIC SAMPLE MEANS ON MANIFOLDS—II , 2003 .
[40] E. Mammen,et al. Smooth Discrimination Analysis , 1999 .
[41] Benoît R. Kloeckner. A geometric study of Wasserstein spaces: Euclidean spaces , 2008, 0804.3505.
[42] R. Veldhuis. The centroid of the symmetrical Kullback-Leibler distance , 2002, IEEE Signal Processing Letters.
[43] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[44] R. Bhattacharya,et al. Large sample theory of intrinsic and extrinsic sample means on manifolds--II , 2005, math/0507423.
[45] Alexey Kroshnin,et al. Statistical inference for Bures–Wasserstein barycenters , 2019, The Annals of Applied Probability.
[46] Marco Cuturi,et al. Computational Optimal Transport , 2019 .
[47] O. Bousquet. A Bennett concentration inequality and its application to suprema of empirical processes , 2002 .
[48] H. Le,et al. Limit theorems for empirical Fr\'echet means of independent and non-identically distributed manifold-valued random variables , 2011, 1102.0228.
[49] V. Koltchinskii,et al. Oracle inequalities in empirical risk minimization and sparse recovery problems , 2011 .
[50] R. Handel. Probability in High Dimension , 2014 .
[51] C. Villani,et al. Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces , 2005, math/0503123.
[52] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[53] F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .
[54] M. Émery,et al. Sur le barycentre d'une probabilité dans une variété , 1991 .
[55] C. Villani. Topics in Optimal Transportation , 2003 .
[56] Gilles Blanchard,et al. On the Rate of Convergence of Regularized Boosting Classifiers , 2003, J. Mach. Learn. Res..
[57] I. Vajda. Theory of statistical inference and information , 1989 .
[58] Jonathan Weed,et al. Estimation of smooth densities in Wasserstein distance , 2019, COLT.
[59] S. Boucheron,et al. Theory of classification : a survey of some recent advances , 2005 .
[60] Yoshua Bengio,et al. Generative Adversarial Nets , 2014, NIPS.
[61] C. Villani. Optimal Transport: Old and New , 2008 .
[63] V. Koltchinskii. Rejoinder: Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0135.
[64] K. Ball,et al. Sharp uniform convexity and smoothness inequalities for trace norms , 1994 .
[65] Jason Altschuler,et al. Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration , 2017, NIPS.
[66] Paolo Tilli,et al. Topics on analysis in metric spaces , 2004 .
[67] Gabriel Peyré,et al. Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..
[68] J. A. Cuesta-Albertos,et al. A fixed-point approach to barycenters in Wasserstein space , 2015, 1511.05355.