Quantitative Analysis of Diffusion Weighted MR Images of Brain Tumor Using Signal Intensity Gradient Technique

The purpose of this study was to evaluate the role of diffusion weighted-magnetic resonance imaging (DW-MRI) in the examination and classification of brain tumors, namely, glioma and meningioma. Our hypothesis was that as signal intensity variations on diffusion weighted (DW) images depend on histology and cellularity of the tumor, analysing the signal intensity characteristics on DW images may allow differentiating between the tumor types. Towards this end the signal intensity variations on DW images of the entire tumor volume data of 20 subjects with glioma and 12 subjects with meningioma were investigated and quantified using signal intensity gradient (SIG) parameter. The relative increase in the SIG values (RSIG) for the subjects with glioma and meningioma was in the range of 10.08–28.36 times and 5.60–9.86 times, respectively, compared to their corresponding SIG values on the contralateral hemisphere. The RSIG values were significantly different between the subjects with glioma and meningioma (P < 0.01), with no overlap between RSIG values across the two tumors. The results indicate that the quantitative changes in the RSIG values could be applied in the differential diagnosis of glioma and meningioma, and their adoption in clinical diagnosis and treatment could be helpful and informative.

[1]  B. Yeole Trends in the brain cancer incidence in India. , 2008, Asian Pacific journal of cancer prevention : APJCP.

[2]  K. Okamoto,et al.  Diffusion-weighted echo-planar MR imaging in differential diagnosis of brain tumors and tumor-like conditions , 2000, European Radiology.

[3]  S. Schold Russell and Rubenstein's Pathology of Tumors of the Nervous System , 1999 .

[4]  Kaoru Kurisu,et al.  Apparent diffusion coefficient of human brain tumors at MR imaging. , 2005, Radiology.

[5]  Y. Bilgili,et al.  Effect of region of interest on interobserver variance in apparent diffusion coefficient measures. , 2004, AJNR. American journal of neuroradiology.

[6]  T. Nägele,et al.  Water diffusivity: comparison of primary CNS lymphoma and astrocytic tumor infiltrating the corpus callosum. , 2009, AJR. American journal of roentgenology.

[7]  Paul S Tofts,et al.  Apparent diffusion coefficient histograms may predict low‐grade glioma subtype , 2007, NMR in biomedicine.

[8]  T. Hirai,et al.  Magnetic resonance imaging of pilocytic astrocytomas: usefulness of the minimum apparent diffusion coefficient (adc) value for differentiation from high-grade gliomas , 2008, Acta radiologica.

[9]  R D Tien,et al.  MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. , 1994, AJR. American journal of roentgenology.

[10]  W. Marsden I and J , 2012 .

[11]  K. Kono,et al.  The role of diffusion-weighted imaging in patients with brain tumors. , 2001, AJNR. American journal of neuroradiology.

[12]  C Thomsen,et al.  [Diffusion-weighted MR imaging of the brain]. , 2001, Ugeskrift for laeger.

[13]  Toshinori Hirai,et al.  Usefulness of diffusion‐weighted MRI with echo‐planar technique in the evaluation of cellularity in gliomas , 1999, Journal of magnetic resonance imaging : JMRI.

[14]  James M Provenzale,et al.  Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. , 2002, Radiology.

[15]  D. Collins,et al.  Diffusion-weighted MRI in the body: applications and challenges in oncology. , 2007, AJR. American journal of roentgenology.

[16]  S. Cha,et al.  Update on brain tumor imaging: from anatomy to physiology. , 2006, AJNR. American journal of neuroradiology.

[17]  M Hoehn-Berlage,et al.  Quantitative diffusion MR imaging of cerebral tumor and edema. , 1994, Acta neurochirurgica. Supplementum.

[18]  M. Gourie‐Devi Organization of neurology services in India: unmet needs and the way forward. , 2008, Neurology India.

[19]  P. Baraldi,et al.  Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging , 2007, Neuroradiology.

[20]  Y.H. Chan,et al.  Diffusion-Weighted MR Imaging: Diagnosing Atypical or Malignant Meningiomas and Detecting Tumor Dedifferentiation , 2008, American Journal of Neuroradiology.

[21]  W. S. Monkhouse,et al.  GRAY'S ANATOMY , 1947 .

[22]  E. Karaarslan,et al.  Diffusion weighted MR imaging in non-infarct lesions of the brain. , 2008, European journal of radiology.

[23]  V. Jellús,et al.  Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. , 2001, AJNR. American journal of neuroradiology.

[24]  R C McKinstry,et al.  Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. , 2001, AJR. American journal of roentgenology.

[25]  Usha Sinha,et al.  Relationships Between Choline Magnetic Resonance Spectroscopy, Apparent Diffusion Coefficient and Quantitative Histopathology in Human Glioma , 2000, Journal of Neuro-Oncology.

[26]  Timothy D Johnson,et al.  Comparison of apparent diffusion coefficients and distributed diffusion coefficients in high‐grade gliomas , 2010, Journal of magnetic resonance imaging : JMRI.

[27]  H. Gray Gray's Anatomy , 1858 .

[28]  G. S. Robinson Edge detection by compass gradient masks , 1977 .

[29]  M Hoehn-Berlage,et al.  High resolution quantitative relaxation and diffusion mri of three different experimental brain tumors in rat , 1995, Magnetic resonance in medicine.

[30]  M A Edgar,et al.  Appearance of meningiomas on diffusion-weighted images: correlating diffusion constants with histopathologic findings. , 2001, AJNR. American journal of neuroradiology.

[31]  Hung T. Nguyen,et al.  Fundamentals of mathematical statistics , 1989 .

[32]  H. R. Arvinda,et al.  RETRACTED ARTICLE: Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging , 2009, Journal of Neuro-Oncology.

[33]  Toshinori Hirai,et al.  Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one- versus two-parameter pilot method. , 2009, Radiology.

[34]  R. Henry,et al.  Perfusion, diffusion and spectroscopy values in newly diagnosed cerebral gliomas , 2006, NMR in biomedicine.

[35]  R. Scienza,et al.  Diffusion-weighted imaging does not predict histological grading in meningiomas , 2010, Acta Neurochirurgica.

[36]  J K Smith,et al.  Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas. , 2001, AJNR. American journal of neuroradiology.

[37]  D. Nam,et al.  Diffusion MR Imaging in Patients with Intracranial Tumors , 2000 .

[38]  A. Drevelegas,et al.  Imaging of Brain Tumors with Histological Correlations , 2002, Springer Berlin Heidelberg.

[39]  S. Maier,et al.  Diffusion imaging of brain tumors , 2010, NMR in biomedicine.

[40]  Jharna Majumdar,et al.  A Novel Architecture for Real Time Implementation of Edge Detectors on FPGA , 2011 .

[41]  Seung Hong Choi,et al.  Gliomas: Histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging--correlation with tumor grade. , 2011, Radiology.

[42]  R. Gonzalez,et al.  Diffusion-weighted MR imaging of the brain. , 2000, Radiology.

[43]  P. Julka,et al.  Descriptive epidemiology of primary brain and CNS tumors in Delhi, 2003-2007. , 2012, Asian Pacific journal of cancer prevention : APJCP.