Nanointerface-driven pseudocapacitance tuning of TiO2 nanosheet anodes for high-rate, ultralong-life and enhanced capacity sodium-ion batteries

[1]  Xiaobo Ji,et al.  A kinetically well-matched full-carbon sodium-ion capacitor , 2019, Journal of Materials Chemistry A.

[2]  Hun‐Gi Jung,et al.  Carbon-Free TiO2 Microspheres as Anode Materials for Sodium Ion Batteries , 2019, ACS Energy Letters.

[3]  F. Bella,et al.  Combined Structural, Chemometric, and Electrochemical Investigation of Vertically Aligned TiO2 Nanotubes for Na-ion Batteries , 2018, ACS omega.

[4]  P. Tartaj,et al.  TiO2 Nanostructures as Anode Materials for Li/Na-Ion Batteries. , 2018, Chemical record.

[5]  Christopher W. Foster,et al.  Advanced Hierarchical Vesicular Carbon Co‐Doped with S, P, N for High‐Rate Sodium Storage , 2018, Advanced science.

[6]  M. Jamesh,et al.  Advancement of technology towards developing Na-ion batteries , 2018 .

[7]  Jian Yang,et al.  Biphase-Interface Enhanced Sodium Storage and Accelerated Charge Transfer: Flower-Like Anatase/Bronze TiO2/C as an Advanced Anode Material for Na-Ion Batteries. , 2017, ACS applied materials & interfaces.

[8]  Arumugam Manthiram,et al.  An Outlook on Lithium Ion Battery Technology , 2017, ACS central science.

[9]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[10]  Wei-li Song,et al.  Three-dimensional porous carbon-coated graphene composite as high-stable and long-life anode for sodium-ion batteries , 2017 .

[11]  Haiyan Wang,et al.  N-doped rutile TiO 2 /C with Significantly Enhanced Na Storage Capacity for Na-ion Batteries , 2017 .

[12]  Pengfei Yan,et al.  Tuning the Solid Electrolyte Interphase for Selective Li‐ and Na‐Ion Storage in Hard Carbon , 2017, Advanced materials.

[13]  Kangli Wang,et al.  Glycol Derived Carbon- TiO2 as Low Cost and High Performance Anode Material for Sodium-Ion Batteries , 2017, Scientific Reports.

[14]  A. Maignan,et al.  A Reversible Phase Transition for Sodium Insertion in Anatase TiO2 , 2017 .

[15]  Yi Cui,et al.  Shape-Controlled TiO2 Nanocrystals for Na-Ion Battery Electrodes: The Role of Different Exposed Crystal Facets on the Electrochemical Properties. , 2017, Nano letters.

[16]  Yong‐Sheng Hu,et al.  Hard Carbon Microtubes Made from Renewable Cotton as High‐Performance Anode Material for Sodium‐Ion Batteries , 2016 .

[17]  J. Tirado,et al.  Na3V2(PO4)3/C Nanorods with Improved Electrode-Electrolyte Interface As Cathode Material for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[18]  Xiaobo Ji,et al.  Pinecone-like hierarchical anatase TiO2 bonded with carbon enabling ultrahigh cycling rates for sodium storage , 2016 .

[19]  Xiaobo Ji,et al.  Size-Tunable Olive-Like Anatase TiO2 Coated with Carbon as Superior Anode for Sodium-Ion Batteries. , 2016, Small.

[20]  Zhenxiang Cheng,et al.  Boron-Doped Anatase TiO2 as a High-Performance Anode Material for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[21]  D. Yan,et al.  A new sodium storage mechanism of TiO2 for sodium ion batteries , 2016 .

[22]  Xiaobo Ji,et al.  Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies. , 2016, ACS applied materials & interfaces.

[23]  S. Ringer,et al.  Single crystal forms induced diverse interface structures in TiO2 (B)/anatase dual-phase nanocomposites , 2016 .

[24]  H. Munakata,et al.  Effect of Anatase TiO2 on Electrochemical Properties of Elongated Bending TiO2-Bronze nanowires for Lithium Ion Batteries , 2016 .

[25]  W. Tremel,et al.  Extraordinary Performance of Carbon‐Coated Anatase TiO2 as Sodium‐Ion Anode , 2015, Advanced energy materials.

[26]  J. Tarascon,et al.  Na Reactivity toward Carbonate-Based Electrolytes: The Effect of FEC as Additive , 2016 .

[27]  Yong-Sheng Hu,et al.  Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries , 2016 .

[28]  N. Sharma,et al.  Introducing a 0.2 V sodium-ion battery anode: The Na2Ti3O7 to Na3 − xTi3O7 pathway , 2015 .

[29]  Yan Zhang,et al.  Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium‐Ion Batteries with Ultralong Cycle Life , 2015, Advanced materials.

[30]  S. Dahl,et al.  In situ monitoring of TiO2(B)/anatase nanoparticle formation and application in Li-ion and Na-ion batteries , 2015 .

[31]  S. Dou,et al.  Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries , 2015 .

[32]  Ozkan Yildiz,et al.  Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material. , 2015, ACS applied materials & interfaces.

[33]  Xiaobo Ji,et al.  An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage. , 2015, Physical chemistry chemical physics : PCCP.

[34]  E. Ventosa,et al.  Is TiO2 (B) the Future of Titanium-Based Battery Materials? , 2015, ChemPlusChem.

[35]  M. R. Palacín,et al.  Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries , 2015 .

[36]  K. Kubota,et al.  Review-Practical Issues and Future Perspective for Na-Ion Batteries , 2015 .

[37]  D. Bresser,et al.  Unfolding the Mechanism of Sodium Insertion in Anatase TiO2 Nanoparticles , 2015 .

[38]  D. Bresser,et al.  Nanocrystalline TiO2(B) as Anode Material for Sodium-Ion Batteries , 2015 .

[39]  Matteo Cargnello,et al.  Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. , 2014, Chemical reviews.

[40]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[41]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[42]  D. Bresser,et al.  Anatase TiO2 nanoparticles for high power sodium-ion anodes , 2014 .

[43]  Vinodkumar Etacheri,et al.  Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. , 2014, ACS nano.

[44]  Chong Seung Yoon,et al.  Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. , 2014, Nano letters.

[45]  Huanlei Wang,et al.  Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. , 2013, Chemical communications.

[46]  Gabriel M. Veith,et al.  Germanium as negative electrode material for sodium-ion batteries , 2013 .

[47]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[48]  Hanxi Yang,et al.  Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries , 2013 .

[49]  P. Bruce,et al.  Nanostructured TiO2(B): the effect of size and shape on anode properties for Li-ion batteries , 2013 .

[50]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[51]  Palani Balaya,et al.  Na2Ti3O7: an intercalation based anode for sodium-ion battery applications , 2013 .

[52]  Xinping Ai,et al.  High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. , 2012, Chemical communications.

[53]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[54]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[55]  Xun Wang,et al.  Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. , 2010, Chemical communications.

[56]  T. Brousse,et al.  TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance. , 2010, Inorganic chemistry.

[57]  P. Balaya,et al.  Mesoporous TiO2 with high packing density for superior lithium storage , 2010 .

[58]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[59]  L. Brohan,et al.  Accurate Methods for Quantifying the Relative Ratio of Anatase and TiO2(B) Nanoparticles , 2009 .

[60]  M. Armand,et al.  Building better batteries , 2008, Nature.

[61]  S. B. Amor,et al.  Titania Coatings on Polyethylene Terephthalate: Adhesion and XPS Studies , 1998 .

[62]  M. Engelhard,et al.  The adsorption of liquid and vapor water on TiO2(110) surfaces : the role of defects , 1995 .