Ribosomal proteins induce stem cell-like characteristics in glioma cells as an “extra-ribosomal function”

[1]  Q. Cheng,et al.  Glioma targeted therapy: insight into future of molecular approaches , 2022, Molecular cancer.

[2]  D. Dai,et al.  The functional role of Pescadillo ribosomal biogenesis factor 1 in cancer , 2022, Journal of Cancer.

[3]  Seok-Geun Lee,et al.  Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? , 2021, International journal of molecular sciences.

[4]  Z. Nasr,et al.  Deregulation of ribosomal proteins in human cancers , 2021, Bioscience reports.

[5]  C. Balañà,et al.  Glioblastoma: Relationship between Metabolism and Immunosuppressive Microenvironment , 2021, Cells.

[6]  Fang-ye Li,et al.  Suppression of Ribosome Biogenesis by Targeting WD Repeat Domain 12 (WDR12) Inhibits Glioma Stem-Like Cell Growth , 2021, Frontiers in Oncology.

[7]  N. Shinojima,et al.  Glioma Cells Acquire Stem-like Characters by Extrinsic Ribosome Stimuli , 2021, Cells.

[8]  C. Balañà,et al.  Hypoxia: The Cornerstone of Glioblastoma , 2021, International journal of molecular sciences.

[9]  F. Quintana,et al.  Glial and myeloid heterogeneity in the brain tumour microenvironment , 2021, Nature Reviews Cancer.

[10]  M. Oliva,et al.  Cytotoxicity Effect of Quinoin, Type 1 Ribosome-Inactivating Protein from Quinoa Seeds, on Glioblastoma Cells , 2021, Toxins.

[11]  Abdul Samad Basheer,et al.  Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications , 2021, Cancers.

[12]  Jun Lin,et al.  Overexpressed MPS-1 contributes to endometrioma development through the NF-κB signaling pathway , 2021, Reproductive Biology and Endocrinology.

[13]  A. Russo,et al.  Ribosome Biogenesis and Cancer: Overview on Ribosomal Proteins , 2021, International journal of molecular sciences.

[14]  Zahra Setayesh-Mehr,et al.  Toxic proteins application in cancer therapy , 2021, Molecular Biology Reports.

[15]  Shah Adil Ishtiyaq Ahmad,et al.  Ribosome Incorporation Induces EMT-like Phenomenon with Cell Cycle Arrest in Human Breast Cancer Cell , 2021, Cells Tissues Organs.

[16]  R. Kariya,et al.  Ribosome induces transdifferentiation of A549 and H-111-TC cancer cell lines , 2021, Biochemistry and biophysics reports.

[17]  K. Norris,et al.  Ribosome heterogeneity and specialization in development , 2021, Wiley interdisciplinary reviews. RNA.

[18]  C. Toulas,et al.  Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids , 2020, bioRxiv.

[19]  J. Bartek,et al.  Dysregulated Ribosome Biogenesis Reveals Therapeutic Liabilities in Cancer. , 2020, Trends in cancer.

[20]  B. Isidor,et al.  Ribosomopathies: New Therapeutic Perspectives , 2020, Cells.

[21]  G. Giamas,et al.  Breaking through the glioblastoma micro-environment via extracellular vesicles , 2020, Oncogene.

[22]  D. Schmitt,et al.  Ribosomal Protein S27/Metallopanstimulin-1 (RPS27) in Glioma—A New Disease Biomarker? , 2020, Cancers.

[23]  N. Shinojima,et al.  Ribosomal protein S6 promotes stem‐like characters in glioma cells , 2020, Cancer science.

[24]  Yang Li,et al.  Integrative genomic analyses identify WDR12 as a novel oncogene involved in glioblastoma , 2020, Journal of cellular physiology.

[25]  Mariella G. Filbin,et al.  An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma , 2019, Cell.

[26]  Yue Wang,et al.  MicroRNA‐99b suppresses human cervical cancer cell activity by inhibiting the PI3K/AKT/mTOR signaling pathway , 2019, Journal of cellular physiology.

[27]  T. Kumabe,et al.  Novel concept of the border niche: glioblastoma cells use oligodendrocytes progenitor cells (GAOs) and microglia to acquire stem cell-like features , 2019, Brain tumor pathology.

[28]  X. Breakefield,et al.  Multidimensional communication in the microenvirons of glioblastoma , 2018, Nature Reviews Neurology.

[29]  Fuhui Long,et al.  An anatomic transcriptional atlas of human glioblastoma , 2018, Science.

[30]  N. Russell,et al.  Early changes in rpS6 phosphorylation and BH3 profiling predict response to chemotherapy in AML cells , 2018, PloS one.

[31]  K. Makino,et al.  Oligodendrocyte Progenitor Cells and Macrophages/Microglia Produce Glioma Stem Cell Niches at the Tumor Border , 2018, EBioMedicine.

[32]  H. Kiyonari,et al.  Ribosome Incorporation into Somatic Cells Promotes Lineage Transdifferentiation towards Multipotency , 2018, Scientific Reports.

[33]  F. Court,et al.  Origin of axonal proteins: Is the axon‐schwann cell unit a functional syncytium? , 2016, Cytoskeleton.

[34]  Xian-wen Hu,et al.  Aggregation of Ribosomal Protein S6 at Nucleolus Is Cell Cycle‐Controlled and Its Function in Pre‐rRNA Processing Is Phosphorylation Dependent , 2016, Journal of cellular biochemistry.

[35]  Zhaoxia Liu,et al.  Overexpression of Notch3 and pS6 Is Associated with Poor Prognosis in Human Ovarian Epithelial Cancer , 2016, Mediators of inflammation.

[36]  Guanzhen Yu,et al.  Reciprocal expression of p-AMPKa and p-S6 is strongly associated with the prognosis of gastric cancer , 2016, Tumor Biology.

[37]  E. Valjent,et al.  Ribosomal Protein S6 Phosphorylation in the Nervous System: From Regulation to Function , 2015, Front. Mol. Neurosci..

[38]  P. Schirmacher,et al.  The ribosomal protein S6 in renal cell carcinoma: functional relevance and potential as biomarker , 2015, Oncotarget.

[39]  Z. Qiu,et al.  Hyperphosphorylation of ribosomal protein S6 predicts unfavorable clinical survival in non-small cell lung cancer , 2015, Journal of experimental & clinical cancer research : CR.

[40]  S. Hirota,et al.  Activation of mTOR/S6K But Not MAPK Pathways Might Be Associated With High Ki-67, ER(+), and HER2(-) Breast Cancer. , 2015, Clinical breast cancer.

[41]  Xiang Zhou,et al.  Ribosomal proteins: functions beyond the ribosome. , 2015, Journal of molecular cell biology.

[42]  Gelareh Zadeh,et al.  GBM's multifaceted landscape: highlighting regional and microenvironmental heterogeneity. , 2014, Neuro-oncology.

[43]  J. Rheinwald,et al.  Phosphorylated S6 as an immunohistochemical biomarker of vulvar intraepithelial neoplasia , 2013, Modern Pathology.

[44]  K. Flaherty,et al.  TORC1 Suppression Predicts Responsiveness to RAF and MEK Inhibition in BRAF-Mutant Melanoma , 2013, Science Translational Medicine.

[45]  A. Maitra,et al.  Phosphorylation of ribosomal protein S6 attenuates DNA damage and tumor suppression during development of pancreatic cancer. , 2013, Cancer research.

[46]  J. A. Fernandez-Pol Increased serum level of RPMPS-1/S27 protein in patients with various types of cancer is useful for the early detection, prevention and therapy. , 2012, Cancer genomics & proteomics.

[47]  K. Mazan-Mamczarz,et al.  Ribosomal protein S6 is highly expressed in non-Hodgkin lymphoma and associates with mRNA containing a 5′ terminal oligopyrimidine tract , 2011, Oncogene.

[48]  Yi Sun,et al.  Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis s a target, a substrate, and a regulator , 2010, Oncogene.

[49]  E. Hurt,et al.  Driving ribosome assembly. , 2010, Biochimica et biophysica acta.

[50]  B. Ebert,et al.  Ribosomopathies: human disorders of ribosome dysfunction. , 2010, Blood.

[51]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[52]  K. B. McIntosh,et al.  How common are extraribosomal functions of ribosomal proteins? , 2009, Molecular cell.

[53]  F. Court,et al.  Schwann Cell to Axon Transfer of Ribosomes: Toward a Novel Understanding of the Role of Glia in the Nervous System , 2008, The Journal of Neuroscience.

[54]  Davide Ruggero,et al.  Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency , 2008, Nature.

[55]  B. Oh,et al.  Ribosomal protein S6 is a selective mediator of TRAIL-apoptotic signaling , 2008, Oncogene.

[56]  D. Wong,et al.  Dissecting the Akt/Mammalian Target of Rapamycin Signaling Network: Emerging Results from the Head and Neck Cancer Tissue Array Initiative , 2007, Clinical Cancer Research.

[57]  M. Minden,et al.  Constitutive phosphorylation of the S6 ribosomal protein via mTOR and ERK signaling in the peripheral blasts of acute leukemia patients. , 2006, Experimental hematology.

[58]  Y. Qu,et al.  In vitro and In vivo Evidence of Metallopanstimulin-1 in Gastric Cancer Progression and Tumorigenicity , 2006, Clinical Cancer Research.

[59]  E. Kremmer,et al.  Mammalian WDR12 is a novel member of the Pes1–Bop1 complex and is required for ribosome biogenesis and cell proliferation , 2005, The Journal of cell biology.

[60]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[61]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[62]  P. Dirks,et al.  Cancer stem cells in nervous system tumors , 2004, Oncogene.

[63]  L. Lau,et al.  Physical and functional interaction between Pes1 and Bop1 in mammalian ribosome biogenesis. , 2004, Molecules and Cells.

[64]  T. Sasajima,et al.  Identification of metallopanstimulin-1 as a member of a tumor associated antigen in patients with breast cancer. , 2002, Cancer letters.

[65]  D. Ganger,et al.  Metallopanstimulin is overexpressed in a patient with colonic carcinoma. , 1997, Anticancer research.

[66]  J. Fletcher,et al.  Expression of metallopanstimulin and oncogenesis in human prostatic carcinoma. , 1997, Anticancer research.

[67]  H. Wakimoto,et al.  Extracellular matrix in glioblastoma: opportunities for emerging therapeutic approaches. , 2021, American journal of cancer research.

[68]  G. Sundar,et al.  Glioma , 2015, Nature Reviews Disease Primers.