A family of oxide ion conductors based on the ferroelectric perovskite Na1/2Bi1/2TiO3

Oxide ion conductors find important technical applications in electrochemical devices such as solid-oxide fuel cells (SOFCs), oxygen separation membranes and sensors. Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material; however, it is often reported to possess high leakage conductivity that is problematic for its piezo- and ferroelectric applications. Here we report this high leakage to be oxide ion conduction due to Bi-deficiency and oxygen vacancies induced during materials processing. Mg-doping on the Ti-site increases the ionic conductivity to ~0.01 S cm(-1) at 600 °C, improves the electrolyte stability in reducing atmospheres and lowers the sintering temperature. This study not only demonstrates how to adjust the nominal NBT composition for dielectric-based applications, but also, more importantly, gives NBT-based materials an unexpected role as a completely new family of oxide ion conductors with potential applications in intermediate-temperature SOFCs and opens up a new direction to design oxide ion conductors in perovskite oxides.

[1]  Laurent Jantsky,et al.  Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure. , 2008, Nature materials.

[2]  Eric D. Wachsman,et al.  Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x-(WO3)y-(BiO1.5)1-x-y , 2010 .

[3]  J. Goodenough,et al.  Sr1−xKxSi1−yGeyO3−0.5x: a new family of superior oxide-ion conductors , 2012 .

[4]  V. Dorcet,et al.  Reinvestigation of Phase Transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First Order Rhombohedral to Orthorhombic Phase Transition , 2008 .

[5]  Jacob L. Jones,et al.  Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3 , 2011 .

[6]  P. Thomas,et al.  Evidence for a non-rhombohedral average structure in the lead-free piezoelectric material Na0.5Bi0.5TiO3 , 2010 .

[7]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[8]  Fritz Aldinger,et al.  Bismuth based oxide electrolytes— structure and ionic conductivity , 1999 .

[9]  C. Champeaux,et al.  Optical properties of an epitaxial Na0.5Bi0.5TiO3 thin film grown by laser ablation: Experimental approach and density functional theory calculations , 2010 .

[10]  D. Sinclair,et al.  Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance , 1989 .

[11]  S. Badwal,et al.  Ceramic Membrane Technologies for Oxygen Separation , 2001 .

[12]  J. Kreisel,et al.  Bifurcated Polarization Rotation in Bismuth‐Based Piezoelectrics , 2013 .

[13]  I. Reaney,et al.  Nano‐ and Mesoscale Structure of Na$_{1 \over 2}$Bi$_{1 \over 2}$TiO3: A TEM Perspective , 2012 .

[14]  Yvon Laligant,et al.  Designing fast oxide-ion conductors based on La2Mo2O 9 , 2000, Nature.

[15]  M. Gröting,et al.  Chemical order and local structure of the lead-free relaxor ferroelectric Na1/2Bi1/2TiO3 , 2011 .

[16]  P. Thomas,et al.  Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na(0.5)Bi(0.5)TiO(3). , 2002, Acta crystallographica. Section B, Structural science.

[17]  T. Park,et al.  Effects of Bi nonstoichiometry in (Bi0.5+xNa)TiO3 ceramics , 2011 .

[18]  V. Dorcet,et al.  Reinvestigation of Phase Transitions in Na0.5Bi0.5TiO3 by TEM. Part II: Second Order Orthorhombic to Tetragonal Phase Transition , 2008 .

[19]  M. Islam Ionic transport in ABO3 perovskite oxides: a computer modelling tour , 2000 .

[20]  Tatsumi Ishihara,et al.  Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor , 1994 .

[21]  E. Wachsman,et al.  Lowering the Temperature of Solid Oxide Fuel Cells , 2011, Science.

[22]  Tim Jackson,et al.  Lone‐Pair‐Induced Covalency as the Cause of Temperature‐ and Field‐Induced Instabilities in Bismuth Sodium Titanate , 2012 .

[23]  Manfred Martin,et al.  Probing Diffusion Kinetics with Secondary Ion Mass Spectrometry , 2009 .

[24]  R. Chater,et al.  Oxygen exchange and diffusion measurements: The importance of extracting the correct initial and boundary conditions , 2005 .

[25]  Craig A. J. Fisher,et al.  Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. , 2010, Chemical Society reviews.

[26]  H. Nagata,et al.  Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics , 2009 .

[27]  R. Brook,et al.  A study of oxygen ion conductivity in doped non-stoichiometric oxides , 1982 .

[28]  E. Wachsman,et al.  Effect of ionic polarizability on oxygen diffusion in δ-Bi2O3 from atomistic simulation , 2010 .

[29]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[30]  Per Kofstad,et al.  Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. , 1972 .

[31]  John A. Kilner,et al.  Temperature dependence of oxygen ion transport in Sr+Mg-substituted LaGaO3 (LSGM) with varying grain sizes , 2004 .

[32]  J. Alonso,et al.  Percolation-limited ionic diffusion in Li0.5-xNaxLa0.5TiO3 perovskites (0 < x ≤ 0.5) , 2002 .

[33]  John T. S. Irvine,et al.  Electroceramics: Characterization by Impedance Spectroscopy , 1990 .

[34]  J. Kilner,et al.  The isotope exchange depth profiling (IEDP) technique using SIMS and LEIS , 2011 .

[35]  Per Kofstad,et al.  Defect chemistry in metal oxides , 1996 .

[36]  Jacob L. Jones,et al.  Phase transition sequence in sodium bismuth titanate observed using high-resolution x-ray diffraction , 2011 .