A comprehensive database for integrated analysis of omics data in autoimmune diseases

Background Autoimmune diseases are heterogeneous pathologies with difficult diagnosis and few therapeutic options. In the last decade, several omics studies have provided significant insights into the molecular mechanisms of these diseases. Nevertheless, data from different cohorts and pathologies are stored independently in public repositories and a unified resource is imperative to assist researchers in this field. Results Here, we present Autoimmune Diseases Explorer ( https://adex.genyo.es ), a database that integrates 82 curated transcriptomics and methylation studies covering 5609 samples for some of the most common autoimmune diseases. The database provides, in an easy-to-use environment, advanced data analysis and statistical methods for exploring omics datasets, including meta-analysis, differential expression or pathway analysis. Conclusions This is the first omics database focused on autoimmune diseases. This resource incorporates homogeneously processed data to facilitate integrative analyses among studies.

[1]  A. Conesa,et al.  Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package , 2015, Nucleic acids research.

[2]  M. Alarcón‐Riquelme,et al.  Omics studies: their use in diagnosis and reclassification of SLE and other systemic autoimmune diseases. , 2016, Rheumatology.

[3]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[4]  J. Sáez-Rodríguez,et al.  Perturbation-response genes reveal signaling footprints in cancer gene expression , 2016, Nature Communications.

[5]  Christian H. Holland,et al.  Benchmark and integration of resources for the estimation of human transcription factor activities. , 2019, Genome research.

[6]  M. Crow Type I Interferon in the Pathogenesis of Lupus , 2014, The Journal of Immunology.

[7]  E. Birney,et al.  Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt , 2009, Nature Protocols.

[8]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[9]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[10]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[11]  Francisco Salavert,et al.  Using activation status of signaling pathways as mechanism-based biomarkers to predict drug sensitivity , 2015, Scientific Reports.

[12]  Virginia Pascual,et al.  A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. , 2008, Immunity.

[13]  Francesco Marabita,et al.  A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data , 2012, Bioinform..

[14]  Ruth Pidsley,et al.  A data-driven approach to preprocessing Illumina 450K methylation array data , 2013, BMC Genomics.

[15]  Jongho Kim,et al.  An integrated clinical and genomic information system for cancer precision medicine , 2018, BMC Medical Genomics.

[16]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[17]  Benjamin M. Bolstad,et al.  affy - analysis of Affymetrix GeneChip data at the probe level , 2004, Bioinform..

[18]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[19]  Pan Du,et al.  lumi: a pipeline for processing Illumina microarray , 2008, Bioinform..

[20]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[21]  A. Bird,et al.  DNA methylation landscapes: provocative insights from epigenomics , 2008, Nature Reviews Genetics.

[22]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[23]  Daniel Toro-Domínguez,et al.  Shared signatures between rheumatoid arthritis, systemic lupus erythematosus and Sjögren’s syndrome uncovered through gene expression meta-analysis , 2014, Arthritis Research & Therapy.

[24]  A. Peck,et al.  The Interferon-Signature of Sjögren’s Syndrome: How Unique Biomarkers Can Identify Underlying Inflammatory and Immunopathological Mechanisms of Specific Diseases , 2013, Front. Immunol..

[25]  Hae-Rim Kim,et al.  Advances in Systems Biology Approaches for Autoimmune Diseases , 2014, Immune network.

[26]  R. Weksberg,et al.  Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray , 2013, Epigenetics.

[27]  Daniel Toro-Domínguez,et al.  ImaGEO: integrative gene expression meta-analysis from GEO database , 2018, Bioinform..

[28]  P. López,et al.  Heterogeneity of the Type I Interferon Signature in Rheumatoid Arthritis: A Potential Limitation for Its Use As a Clinical Biomarker , 2018, Front. Immunol..

[29]  K. Morris,et al.  Interferon-γ and systemic autoimmunity. , 2013, Discovery medicine.

[30]  G. Cooper,et al.  The epidemiology of autoimmune diseases. , 2003, Autoimmunity reviews.

[31]  Robert Petryszak,et al.  ArrayExpress update—simplifying data submissions , 2014, Nucleic Acids Res..

[32]  L. Rönnblom,et al.  An update on the role of type I interferons in systemic lupus erythematosus and Sjögren's syndrome , 2018, Current opinion in rheumatology.

[33]  Kathleen M Jagodnik,et al.  Massive mining of publicly available RNA-seq data from human and mouse , 2017, Nature Communications.

[34]  A. El-Osta,et al.  Gene name errors are widespread in the scientific literature , 2016, Genome Biology.

[35]  M. Kleinewietfeld,et al.  Environmental factors in autoimmune diseases and their role in multiple sclerosis , 2016, Cellular and Molecular Life Sciences.

[36]  Jinwei Chen,et al.  Application of omics in predicting anti-TNF efficacy in rheumatoid arthritis , 2017, Clinical Rheumatology.

[37]  Avi Ma'ayan,et al.  Mining data and metadata from the gene expression omnibus , 2018, Biophysical Reviews.

[38]  Wei Shi,et al.  Optimizing the noise versus bias trade-off for Illumina whole genome expression BeadChips , 2010, Nucleic acids research.

[39]  M. Alarcón‐Riquelme,et al.  Moving towards a molecular taxonomy of autoimmune rheumatic diseases , 2018, Nature Reviews Rheumatology.

[40]  L. Rönnblom,et al.  The interferon signature in autoimmune diseases , 2013, Current opinion in rheumatology.

[41]  N. Pavlos,et al.  Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies , 2018, Bone Research.

[42]  Carlos Loucera,et al.  Exploring the druggable space around the Fanconi anemia pathway using machine learning and mechanistic models , 2019, BMC Bioinformatics.

[43]  Panuwat Trairatphisan,et al.  From expression footprints to causal pathways: contextualizing large signaling networks with CARNIVAL , 2019, npj Systems Biology and Applications.

[44]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[45]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[46]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[47]  Marta R. Hidalgo,et al.  Gene Expression Integration into Pathway Modules Reveals a Pan-Cancer Metabolic Landscape. , 2018, Cancer research.

[48]  C. Mohan,et al.  Systemic lupus erythematosus diagnostics in the 'omics' era. , 2013, International journal of clinical rheumatology.

[49]  J. Sáez-Rodríguez,et al.  Benchmark and integration of resources for the estimation of human transcription factor activities , 2018, bioRxiv.

[50]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[51]  Francisco Salavert,et al.  High throughput estimation of functional cell activities reveals disease mechanisms and predicts relevant clinical outcomes , 2016, bioRxiv.

[52]  Rafael A. Irizarry,et al.  Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays , 2014, Bioinform..

[53]  M. R. Salaman A Two-step Hypothesis for the Appearance of Autoimmune Disease , 2003, Autoimmunity.

[54]  Bart De Moor,et al.  BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis , 2005, Bioinform..

[55]  Izaskun Mallona,et al.  Wanderer, an interactive viewer to explore DNA methylation and gene expression data in human cancer , 2015, Epigenetics & Chromatin.

[56]  Sean R. Davis,et al.  GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor , 2007, Bioinform..

[57]  Tom Heskes,et al.  RankProd 2.0: a refactored bioconductor package for detecting differentially expressed features in molecular profiling datasets , 2017, Bioinform..

[58]  K. Kalunian,et al.  Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study , 2016, Annals of the rheumatic diseases.

[59]  Oliver S. Burren,et al.  A Type I Interferon Transcriptional Signature Precedes Autoimmunity in Children Genetically at Risk for Type 1 Diabetes , 2014, Diabetes.

[60]  Virginia Pascual,et al.  Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients , 2016, Cell.

[61]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[62]  Carlos Loucera,et al.  Exploring the druggable space around the Fanconi anemia pathway using machine learning and mechanistic models , 2019 .

[63]  Simon Yu,et al.  INTERFEROME v2.0: an updated database of annotated interferon-regulated genes , 2012, Nucleic Acids Res..