A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change

Mantle convection is influenced simultaneously by a number of physical effects: brittle failure in the surface plates, strongly variable viscosity, mineral phase changes, and both internal heating (radioactivity) and bottom heating from the core. Here we present a systematic study of three potentially important effects: depth-dependent viscosity, an endothermic phase change, and bottom versus internal heating. We model three-dimensional spherical convection at Rayleigh Ra=108 thus approaching the dynamical regime of the mantle. An isoviscous, internally heated reference model displays point-like downwellings from the cold upper boundary layer, a blue spectrum of thermal heterogeneity, and small but rapid time variations in flow diagnostics. A modest factor 30 increase in lower mantle viscosity results in a planform dominated by long, linear downwellings, a red spectrum, and great temporal stability. Bottom heating has the predictable effect of adding a thermal boundary layer at the base of the mantle. We use a Clapeyron slope of γ=−4 MPa °K−1 for the 670 km phase transition, resulting in a phase buoyancy parameter of P=−0.112. This phase change causes upwellings and downwellings to pause in the transition zone but has little influence on the inherent time dependence of flow and only a modest reddening effect on the heterogeneity spectrum. Larger values of P result in stronger effects, but our choice of P is likely already too large to be representative of the mantle transition zone. Combinations of all three effects are remarkably predictable in terms of the single-effect models, and the effect of depth-dependent viscosity is found to be dominant.

[1]  M. Richards,et al.  An Explanation for Earth's Long-Term Rotational Stability , 1997, Science.

[2]  Mark A. Richards,et al.  The origin of large scale structure in mantle convection: Effects of plate motions and viscosity stratification , 1996 .

[3]  P. Tackley On the ability of phase transitions and viscosity layering to induce long wavelength heterogeneity in the mantle , 1996 .

[4]  Paul J. Tackley,et al.  Effects of strongly variable viscosity on three‐dimensional compressible convection in planetary mantles , 1996 .

[5]  Mark A. Richards,et al.  Effect of depth-dependent viscosity on the planform of mantle convection , 1996, Nature.

[6]  J. Mitrovica,et al.  Haskell [1935] revisited , 1996 .

[7]  S. Balachandar,et al.  Non-equilibrium effects of core-cooling and time-dependent internal heating on mantle flush events , 1995 .

[8]  E. Engdahl,et al.  Imaging of subducted lithosphere beneath South America , 1995 .

[9]  P. Tackley On the penetration of an endothermic phase transition by upwellings and downwellings , 1995 .

[10]  D. Yuen,et al.  Dynamical influences of high viscosity in the lower mantle induced by the steep melting curve of per , 1995 .

[11]  S. Balachandar Signature of the transition zone in the tomographic results extracted through the Eigenfunctions of the two‐point correlation , 1995 .

[12]  M. Richards,et al.  Cenozoic plate driving forces , 1995 .

[13]  David A. Yuen,et al.  The influences of lower mantle viscosity stratification on 3D spherical-shell mantle convection , 1995 .

[14]  Thomas H. Jordan,et al.  Characterization of mantle convection experiments using two-point correlation functions , 1995 .

[15]  Hans-Peter Bunge,et al.  Mantle convection modeling on parallel virtual machines , 1995 .

[16]  M. Gurnis,et al.  Mantle Convection with Plates and Mobile, Faulted Plate Margins , 1995, Science.

[17]  Eugene M. Lavely,et al.  Three‐dimensional seismic models of the Earth's mantle , 1995 .

[18]  U. Christensen EFFECTS OF PHASE TRANSITIONS ON MANTLE CONVECTION , 1995 .

[19]  C. Gable,et al.  Linear stability of a layered fluid with mobile surface plates , 1994 .

[20]  S. Balachandar,et al.  Various influences on three-dimensional mantle convection with phase transitions , 1994 .

[21]  S. King,et al.  Sensitivity of convection with an endothermic phase change to the form of governing equations, initial conditions, boundary conditions, and equation of state , 1994 .

[22]  W. Peltier,et al.  Phase boundary deflections at 660-km depth and episodically layered isochemical convection in the mantle , 1994 .

[23]  David J. Stevenson,et al.  Effects of multiple phase transitions in a three-dimensional spherical model of convection in Earth's mantle , 1994 .

[24]  N. Ribe,et al.  The global hotspot distribution and instability of D (double prime) , 1994 .

[25]  S. Grand Mantle shear structure beneath the Americas and surrounding oceans , 1994 .

[26]  D. Weidner,et al.  Thermoelasticity of CaSiO3 perovskite and implications for the lower mantle , 1994 .

[27]  Wei-jia Su,et al.  Degree 12 model of shear velocity heterogeneity in the mantle , 1994 .

[28]  W. Peltier,et al.  Avalanche effects in phase transition modulated thermal convection: A model of Earth's mantle , 1994 .

[29]  T. Jordan,et al.  Stochastic analysis of mantle convection experiments using two‐point correlation functions , 1994 .

[30]  C. Sotin,et al.  Turbulent 3‐D thermal convection in an infinite Prandtl number, volumetrically heated fluid: implications for mantle dynamics , 1994 .

[31]  T. Lay The Fate of Descending Slabs , 1994 .

[32]  G. Schubert,et al.  On the penetration of the 660 km phase change by mantle downflows , 1993 .

[33]  G. Schubert,et al.  Three‐dimensional spherical models of layered and whole mantle convection , 1993 .

[34]  M. Richards,et al.  A geodynamic model of mantle density heterogeneity , 1993 .

[35]  M. Richards,et al.  A Detailed Map of the 660-Kilometer Discontinuity Beneath the Izu-Bonin Subduction Zone , 1993, Science.

[36]  T. Jordan,et al.  Comparisons Between Seismic Earth Structures and Mantle Flow Models Based on Radial Correlation Functions , 1993, Science.

[37]  E. Ito,et al.  Refinement of enthalpy measurement of MgSiO3 perovskite and negative pressure‐temperature slopes for Perovskite‐forming reactions , 1993 .

[38]  Shijie Zhong,et al.  Dynamic feedback between a continentlike raft and thermal convection , 1993 .

[39]  T. Ahrens,et al.  Thermal expansion of mantle and core materials at very high pressures , 1993 .

[40]  W. Peltier,et al.  Mantle phase transitions and layered convection , 1993 .

[41]  D. Yuen,et al.  Dynamical consequences of depth-dependent thermal expansivity and viscosity on mantle circulations and thermal structure , 1993 .

[42]  G. Jarvis Effects of curvature on two‐dimensional models of mantle convection: Cylindrical polar coordinates , 1993 .

[43]  S. Balachandar,et al.  Three-Dimensional Instabilities of Mantle Convection with Multiple Phase Transitions , 1993, Science.

[44]  David J. Stevenson,et al.  Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth's mantle , 1993, Nature.

[45]  S. Weinstein Catastrophic overturn of the Earth's mantle driven by multiple phase changes and internal heat generation , 1993 .

[46]  Don W. Vasco,et al.  Tomographic inversions for mantle P wave velocity structure based on the minimization of l 2 and l 1 norms of International Seismological Centre Travel Time Residuals , 1993 .

[47]  D. Yuen,et al.  Axisymmetric spherical shell models of mantle convection with variable properties and free and rigid lids , 1992 .

[48]  N. Sleep Time dependence of mantle plumes: Some simple theory , 1992 .

[49]  G. Spada,et al.  Excitation of true polar wander by subduction , 1992, Nature.

[50]  S. Balachandar,et al.  Time‐dependent three dimensional compressible convection with depth‐dependent properties , 1992 .

[51]  R. Boehler,et al.  Thermal expansivity in the lower mantle , 1992 .

[52]  O. Anderson,et al.  A model for the computation of thermal expansivity at high compression and high temperatures: MGO as an example , 1992 .

[53]  Guy Masters,et al.  An inversion for radial viscosity structure using seismic tomography , 1992 .

[54]  P. Richards,et al.  Borovoye Geophysical Observatory, Kazakhstan , 1992 .

[55]  W. Peltier,et al.  Mantle phase transitions and layered chaotic convection , 1992 .

[56]  O. Anderson,et al.  High‐temperature elastic constant data on minerals relevant to geophysics , 1992 .

[57]  P. Shearer,et al.  Global mapping of topography on the 660-km discontinuity , 1992, Nature.

[58]  M. Richards,et al.  Large-scale mantle convection and the history of subduction , 1992, Nature.

[59]  G. Schubert Numerical models of mantle convection , 1992 .

[60]  R. Peltier,et al.  Viscous flow models of global geophysical observables: 1. Forward problems , 1991 .

[61]  Guust Nolet,et al.  Tomographic imaging of subducted lithosphere below northwest Pacific island arcs , 1991, Nature.

[62]  Wei-jia Su,et al.  Predominance of long-wavelength heterogeneity in the mantle , 1991, Nature.

[63]  S. Zhong,et al.  Generation of Long Wavelength Heterogeneity in the Mantle by the Dynamic Interaction Between Plates and Convection (Paper 91GL00823) 581 , 1991 .

[64]  Patrice Weber,et al.  Intermittent layered convection in a model mantle with an endothermic phase change at 670 km , 1991, Nature.

[65]  M. Richards Hotspots and the Case for a High Viscosity Lower Mantle , 1991 .

[66]  G. Schubert,et al.  Chaotic, subduction-like downflows in a spherical model of convection in the Earth's mantle , 1990, Nature.

[67]  A. Navrotsky,et al.  Negative Pressure-Temperature Slopes for Reactions Formign MgSiO3 Perovskite from Calorimetry , 1990, Science.

[68]  Norman H. Sleep,et al.  Hotspots and Mantle Plumes' Some Phenomenology , 1990 .

[69]  Yosihiko Ogata,et al.  Whole mantle P-wave travel time tomography , 1990 .

[70]  Alexandra Navrotsky,et al.  Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application , 1989 .

[71]  T. Katsura,et al.  The system Mg2SiO4‐Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel , 1989 .

[72]  C. Vigny,et al.  Mantle heterogeneities, geoid, and plate motion: A Monte Carlo inversion , 1989 .

[73]  E. Ito,et al.  Postspinel transformations in the system Mg2SiO4‐Fe2SiO4 and some geophysical implications , 1989 .

[74]  B. Hager,et al.  Long-wavelength variations in Earth’s geoid: physical models and dynamical implications , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[75]  G. Schubert,et al.  Influence of heating mode on three-dimensional mantle convection , 1989 .

[76]  G. Schubert,et al.  Three-Dimensional Spherical Models of Convection in the Earth's Mantle , 1989, Science.

[77]  K. Lambeck,et al.  Late Pleistocene and Holocene sea‐level change in the Australian region and mantle rheology , 1989 .

[78]  G. Glatzmaier Numerical simulations of mantle convection: time-dependent, three-dimensional, compressible, spherical shell , 1988 .

[79]  G. Davies,et al.  Ocean bathymetry and mantle convection: 1. Large‐scale flow and hotspots , 1988 .

[80]  B. Hager,et al.  — a H 03 Dynamically Supported Geoid Highs over Hotspots : Observation and Theory , 2008 .

[81]  G. Houseman The dependence of convection planform on mode of heating , 1988, Nature.

[82]  M. Gurnis,et al.  Mixing in numerical models of mantle convection incorporating plate kinematics , 1986 .

[83]  M. Gurnis,et al.  Numerical study of high Rayleigh number convection in a medium with depth-dependent viscosity , 1986 .

[84]  W. Peltier,et al.  Lateral heterogeneity in the convecting mantle , 1986 .

[85]  J. R. Baumgardner Application of supercomputers to 3-D mantle convection. , 1986 .

[86]  P. Frederickson,et al.  Icosahedral Discretization of the Two-Sphere , 1985 .

[87]  D. Yuen,et al.  Layered convection induced by phase transitions , 1985 .

[88]  John R. Baumgardner,et al.  Three-dimensional treatment of convective flow in the earth's mantle , 1985 .

[89]  Adam M. Dziewonski,et al.  Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6 , 1984 .

[90]  B. Hager,et al.  Geoid Anomalies in a Dynamic Earth , 1984 .

[91]  D. Yuen,et al.  The interaction of a subducting lithospheric slab with a chemical or phase boundary , 1984 .

[92]  P. Smolarkiewicz A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion , 1984 .

[93]  B. Hager Subducted slabs and the geoid: Constraints on mantle rheology and flow , 1983 .

[94]  D. L. Anderson Hotspots, polar wander, Mesozoic convection and the geoid , 1982, Nature.

[95]  J. M. Brown,et al.  Thermodynamic parameters in the Earth as determined from seismic profiles , 1981 .

[96]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[97]  D. McKenzie,et al.  Convection in a compressible fluid with infinite Prandtl number , 1980, Journal of Fluid Mechanics.

[98]  G. Schubert Subsolidus Convection in the Mantles of Terrestrial Planets , 1979 .

[99]  G. Davies Whole-mantle convection and plate tectonics , 1977 .

[100]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[101]  M. H. Houston,et al.  Numerical models of convection in the upper mantle , 1975 .

[102]  F. D. Stacey Physics of the earth , 1977 .

[103]  M. H. Houston,et al.  ADI solution of free convection in a variable viscosity fluid , 1974 .

[104]  N. Weiss,et al.  Convection in the earth's mantle: towards a numerical simulation , 1974, Journal of Fluid Mechanics.

[105]  W. J. Morgan,et al.  Deep Mantle Convection Plumes and Plate Motions , 1972 .

[106]  Kenneth E. Torrance,et al.  Thermal convection with large viscosity variations , 1971, Journal of Fluid Mechanics.

[107]  D. Turcotte,et al.  Phase changes and mantle convection , 1971 .

[108]  H. Takeuchi,et al.  Convection in a mantle with variable viscosity , 1970 .

[109]  D. E. Smylie,et al.  Effect of a Region of Low Viscosity on Thermal Convection in the Mantle , 1968, Nature.

[110]  Donald L. Turcotte,et al.  Finite amplitude convective cells and continental drift , 1967, Journal of Fluid Mechanics.

[111]  J. Verhoogen Phase changes and convection in the Earth’s mantle , 1965, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[112]  G. Wasserburg,et al.  Relative Contributions of Uranium, Thorium, and Potassium to Heat Production in the Earth , 1964, Science.

[113]  I. N. Sneddon,et al.  Finite Deformation of an Elastic Solid , 1954 .

[114]  N. A. Haskell The Motion of a Viscous Fluid Under a Surface Load , 1935 .