Relative performance using haptic and/or touch-produced auditory cues in a remote absolute texture identification task

The current study assessed the relative effectiveness with which unimodal tactile, unimodal touch-produced auditory, and bimodal tactile + auditory cues contribute to the performance of an absolute texture identification task via remote touch. The study contributes to our fundamental understanding of the unimodal perception and intersensory integration of multimodal surface texture cues generated during surface exploration with rigid probes. The results also have significant implications for the design of unimodal and multisensory displays for use with teleoperation and virtual environment systems, as it addresses which modality(ies) may be used to most effectively present sensory information about remotely explored surface textures.

[1]  H. Binns VISUAL AND TACTUAL ‘JUDGEMENT’ AS ILLUSTRATED IN A PRACTICAL EXPERIMENT , 1937 .

[2]  I ROCK,et al.  Vision and Touch: An Experimentally Created Conflict between the Two Senses , 1964, Science.

[3]  R. H. Day,et al.  Visual capture of haptically judged depth , 1969 .

[4]  S. M. Luria,et al.  Conflicting visual and tactual-kinesthetic stimulation , 1970 .

[5]  M. M. Taylor,et al.  Fingertip force, surface geometry, and the perception of roughness by active touch , 1972 .

[6]  D. Freides,et al.  Human information processing and sensory modality: cross-modal functions, information complexity, memory, and deficit. , 1974, Psychological bulletin.

[7]  S. Lederman Tactile roughness of grooved surfaces: The touching process and effects of macro- and microsurface structure , 1974 .

[8]  M. M. Taylor,et al.  Tactile roughness of grooved surfaces: A model and the effect of friction , 1975 .

[9]  R. D. Easton,et al.  A quantitative confirmation of visual capture of curvature. , 1978, The Journal of general psychology.

[10]  N. O’connor,et al.  Seeing and hearing and space and time , 1978 .

[11]  S. Lederman Auditory Texture Perception , 1979, Perception.

[12]  S. Lederman,et al.  Texture perception: studies of intersensory organization using a discrepancy paradigm, and visual versus tactual psychophysics. , 1981, Journal of experimental psychology. Human perception and performance.

[13]  S. Lederman,et al.  The role of vibration in the tactual perception of roughness , 1982, Perception & psychophysics.

[14]  M. Heller Visual and tactual texture perception: Intersensory cooperation , 1982, Perception & psychophysics.

[15]  S. Lederman Tactual roughness perception: Spatial and temporal determinants. , 1983 .

[16]  B. Jones,et al.  Combining vision and touch in texture perception , 1985, Perception & psychophysics.

[17]  S. Lederman,et al.  Perception of texture by vision and touch: multidimensionality and intersensory integration. , 1986, Journal of experimental psychology. Human perception and performance.

[18]  M. Heller Texture perception in sighted and blind observers , 1989, Perception & psychophysics.

[19]  K. O. Johnson,et al.  Roughness coding in the somatosensory system. , 1993, Acta psychologica.

[20]  R. Klatzky,et al.  Haptic exploration in the presence of vision. , 1993, Journal of experimental psychology. Human perception and performance.

[21]  V. Jousmäki,et al.  Parchment-skin illusion: sound-biased touch , 1998, Current Biology.

[22]  W. M. Rabinowitz,et al.  Information transmission with a multifinger tactual display , 1999, Perception & psychophysics.

[23]  R. Klatzky,et al.  Tactile roughness perception with a rigid link interposed between skin and surface , 1999, Perception & psychophysics.

[24]  Susan J. Lederman,et al.  PERCEIVING ROUGHNESS VIA A RIGID PROBE: PSYCHOPHYSICAL EFFECTS OF EXPLORATION SPEED AND MODE OF TOUCH , 1999 .

[25]  Jack Tigh Dennerlein,et al.  Force-feedback improves performance for steering and combined steering-targeting tasks , 2000, CHI.

[26]  M. Hollins,et al.  Evidence for the duplex theory of tactile texture perception , 2000, Perception & psychophysics.

[27]  Colin Ware,et al.  Eye-hand co-ordination with force feedback , 2000, CHI.

[28]  K. Sathian,et al.  Temporal Cues Contribute to Tactile Perception of Roughness , 2001, The Journal of Neuroscience.

[29]  Marcia Kilchenman O'Malley,et al.  Comparison of human haptic size identification and discrimination performance in real and simulated environments , 2002, Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002.

[30]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[31]  Susan J. Lederman,et al.  Integrating multimodal information about surface texture via a probe: relative contributions of haptic and touch-produced sound sources , 2002, Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002.

[32]  C. E. Chapman,et al.  Role of friction and tangential force variation in the subjective scaling of tactile roughness , 2002, Experimental Brain Research.

[33]  C. Spence,et al.  Audiotactile interactions in roughness perception , 2002, Experimental Brain Research.

[34]  Susan J. Lederman,et al.  Virtual peg-in-hole performance using a 6-DOF magnetic levitation haptic device: comparison with real forces and with visual guidance alone , 2002, Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002.

[35]  Stephen A. Brewster,et al.  Comparing two haptic interfaces for multimodal graph rendering , 2002, Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002.