Exact Fast Parallel Intersection of Large 3-D Triangular Meshes

We present 3D-EPUG-Overlay, a fast, exact, parallel, memory-efficient, algorithm for computing the intersection between two large 3-D triangular meshes with geometric degeneracies. Applications include CAD/CAM, CFD, GIS, and additive manufacturing. 3D-EPUG-Overlay combines five separate techniques: multiple precision rational numbers to eliminate roundoff errors during the computations; Simulation of Simplicity to properly handle geometric degeneracies; simple data representations and only local topological information to simplify the correct processing of the data and make the algorithm more parallelizable; a uniform grid to efficiently index the data, and accelerate testing pairs of triangles for intersection or locating points in the mesh; and parallel programming to exploit current hardware. 3D-EPUG-Overlay is up to 101 times faster than LibiGL, and comparable to QuickCSG, a parallel inexact algorithm. 3D-EPUG-Overlay is also more memory efficient. In all test cases 3D-EPUG-Overlay’s result matched the reference solution. It is freely available for nonprofit research and education at https://github.com/sallesviana/MeshIntersection.

[1]  John C. Tipper,et al.  Simple and Robust Boolean Operations for Triangulated Surfaces , 2013, ArXiv.

[2]  Donald Meagher,et al.  Geometric modeling using octree encoding , 1982, Computer Graphics and Image Processing.

[3]  Wenli Li,et al.  PinMesh - Fast and exact 3D point location queries using a uniform grid , 2016, Comput. Graph..

[4]  Mohan S. Kankanhalli,et al.  Area and Perimeter Computation of the Union of a Set of Iso-Rectangles in Parallel , 1995, J. Parallel Distributed Comput..

[5]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[6]  Yongbin Jing,et al.  Boolean Operations on Polygonal Meshes Using OBB Trees , 2009, 2009 International Conference on Environmental Science and Information Application Technology.

[7]  David Sun,et al.  UNIFORM GRIDS: A TECHNIQUE FOR INTERSECTION DETECTION ON SERIAL AND PARALLEL MACHINES , 2008 .

[8]  Chen Li,et al.  Exact Geometric Computation: Theory and Applications , 2001 .

[9]  Giuseppe Pelagatti,et al.  Snap Rounding with Restore , 2016, ACM Trans. Spatial Algorithms Syst..

[10]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[11]  Wenli Li,et al.  Fast exact parallel map overlay using a two-level uniform grid , 2015, BigSpatial@SIGSPATIAL.

[12]  W. Randolph Franklin Polygon properties calculated from the vertex neighborhoods , 1987, SCG '87.

[13]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[14]  John Hershberger Stable snap rounding , 2013, Comput. Geom..

[15]  Kurt Mehlhorn,et al.  Reliable and Efficient Computational Geometry Via Controlled Perturbation , 2006, ICALP.

[16]  Rafael Jesús Segura,et al.  Fast and accurate evaluation of regularized Boolean operations on triangulated solids , 2013, Comput. Aided Des..

[17]  John D. Hobby,et al.  Practical segment intersection with finite precision output , 1999, Comput. Geom..

[18]  Kurt Mehlhorn,et al.  Classroom Examples of Robustness Problems in Geometric Computations , 2004, ESA.

[19]  Mark de Berg,et al.  An intersection-sensitive algorithm for snap rounding , 2007, Comput. Geom..

[20]  Mohan S. Kankanhalli,et al.  Geometric computing and uniform grid technique , 1989 .

[21]  Salles Viana Gomes Magalhães An efficient algorithm for computing the exact overlay of triangulations , 2015, SIGSPATIAL PhD Symposium.

[22]  Mohan S. Kankanhalli,et al.  Efficiency of Uniform Grids for Intersection Detection on Serial and Parallel Machines , 1988 .

[23]  Sylvain Pion,et al.  A generic lazy evaluation scheme for exact geometric computations , 2006, Sci. Comput. Program..

[24]  Marcel Campen,et al.  Hybrid Booleans , 2010, Comput. Graph. Forum.

[25]  W. Randolph Franklin,et al.  Parallel intersection detection in massive sets of cubes , 2017, BigSpatial@SIGSPATIAL.

[26]  Chee Yap Symbolic treatment of geometric degeneracies: Proceedings of the International IFIPS Conference on System Modeling and Optimization. Tokyo, 1987 , 1987 .

[27]  Jonathan Richard Shewchuk,et al.  Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..

[28]  Steve Marschner,et al.  Matching Real Fabrics with Micro-Appearance Models , 2015, ACM Trans. Graph..

[30]  Gilbert Bernstein,et al.  Fast, Exact, Linear Booleans , 2009, Comput. Graph. Forum.

[31]  Kurt Mehlhorn,et al.  Boolean operations on 3D selective Nef complexes: Data structure, algorithms, optimized implementation and experiments , 2007, Comput. Geom..

[32]  Wm. Randolph Franklin Part 4: Mathematical, Algorithmic and Data Structure Issues: Adaptive Grids For Geometric Operations , 1984 .

[33]  Wenli Li,et al.  Exact intersection of 3D geometric models , 2016, GeoInfo.

[34]  W. Randolph Franklin,et al.  NearptD: A Parallel Implementation of Exact Nearest Neighbor Search using a Uniform Grid , 2016, CCCG.

[35]  P. George,et al.  Mesh Generation: Application to Finite Elements , 2007 .

[36]  Matthijs Douze,et al.  QuickCSG: Arbitrary and Faster Boolean Combinations of N Solids , 2015 .

[37]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[38]  Eitan Grinspun,et al.  Mesh arrangements for solid geometry , 2016, ACM Trans. Graph..