A high-fidelity microwave driven two-qubit quantum logic gate in 43Ca+

Quantum computers offer great potential for significant speedup in executing certain algorithms compared to their classical counterparts. One of the most promising physical systems in which implementing such a device seems viable are trapped atomic ions. All of the fundamental operations needed for quantum information processing have already been experimentally demonstrated in trapped ion systems. Today, the remaining two obstacles are to improve the fidelities of these operations up to the point where quantum error correction techniques can be successfully applied, as well as to scale up the present systems to a higher number of quantum bits (qubits). This thesis addresses both issues. On the one hand, it decribes the experimental implementation of a high-fidelity two-qubit quantum logic gate, which is the most technically demanding fundamental operation to realise in practice. On the other hand, the presented work is carried out in a microfabricated surface ion trap – an architecture that holds the promise of scalability. The gate is applied directly to hyperfine "atomic clock" qubits in 43 Ca + ions using the near-field microwave magnetic field gradient produced by an integrated trap electrode. To protect the gate against fluctuating energy shifts of the qubit states, as well as to avoid the need to null the microwave field at the position of the ions, a dynamically decoupled Molmer-Sorensen scheme is employed. After accounting for state preparation and measurement errors, the achieved gate fidelity is 99.7(1)p. In previous work, the same apparatus has been used to demonstrate coherence times of T a 2 ≈ 50 s and all single-qubit operations with fidelity > 99.95p. To gain access to the "atomic clock" qubit transition in 43 Ca + , a static magnetic field of 146G is applied. The resulting energy level Zeeman-structure is spread over many times the linewidth of the atomic transition used for Doppler cooling. This thesis presents a simple and robust method for Doppler cooling and obtaining high fluorescence from this qubit in spite of the complicated level structure. A temperature of 0.3mK, slightly below the Doppler limit, is reached.

[1]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[2]  Patrick Gill,et al.  A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. , 2012, Nature nanotechnology.

[3]  K. Brown,et al.  Techniques for Microwave Near-Field Quantum Control of Trapped Ions , 2012, 1211.6554.

[4]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[5]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[6]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[7]  T. R. Tan,et al.  Demonstration of a dressed-state phase gate for trapped ions. , 2013, Physical review letters.

[8]  A. Steane,et al.  Dark-resonance Doppler cooling and high fluorescence in trapped Ca-43 ions at intermediate magnetic field , 2015, 1510.08958.

[9]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[10]  A Retzker,et al.  Trapped-Ion Quantum Logic with Global Radiation Fields. , 2016, Physical review letters.

[11]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[12]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[13]  D. Szwer,et al.  High fidelity readout and protection of a 43Ca+ trapped ion qubit , 2009 .

[14]  D. M. Lucas,et al.  Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect , 2009, 0909.3272.

[15]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.

[16]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[17]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[18]  G. K. Woodgate Elementary Atomic Structure , 1970 .

[19]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[20]  R. Feynman Simulating physics with computers , 1999 .

[21]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  A. Steane,et al.  A long-lived memory qubit on a low-decoherence quantum bus , 2007, 0710.4421.

[23]  Jian-Wei Pan,et al.  Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits. , 2007, Physical review letters.

[24]  J M Amini,et al.  Trapped-ion quantum logic gates based on oscillating magnetic fields. , 2008, Physical review letters.

[25]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[26]  C. Monroe,et al.  Decoherence and Decay of Motional Quantum States of a Trapped Atom Coupled to Engineered Reservoirs , 2000 .

[27]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[28]  S. Webster,et al.  Ground-State Cooling of a Trapped Ion Using Long-Wavelength Radiation. , 2015, Physical review letters.

[29]  R. Blatt,et al.  The “Trapped State” of a Trapped Ion—Line Shifts and Shape , 1992 .

[30]  M. Johanning,et al.  Designer spin pseudomolecule implemented with trapped ions in a magnetic gradient. , 2011, Physical review letters.

[31]  B. Lanyon,et al.  Experimental demonstration of a compiled version of Shor's algorithm with quantum entanglement. , 2007, Physical review letters.

[32]  J. Britton,et al.  Errors in trapped-ion quantum gates due to spontaneous photon scattering , 2006, quant-ph/0611048.

[33]  J. R. Mitchell,et al.  Grover's search algorithm: An optical approach , 1999, quant-ph/9905086.

[34]  P. C. Haljan,et al.  Implementation of Grover's quantum search algorithm in a scalable system , 2005 .

[35]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[36]  C. S. Wood,et al.  Deterministic Entanglement of Two Trapped Ions , 1998 .

[37]  A. Varon,et al.  A trapped-ion-based quantum byte with 10−5 next-neighbour cross-talk , 2014, Nature Communications.

[38]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[39]  D. M. Lucas,et al.  A microfabricated ion trap with integrated microwave circuitry , 2012, 1210.3272.

[40]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[41]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[42]  E. Knill,et al.  Transport quantum logic gates for trapped ions , 2007, 0707.3646.

[43]  Andreas Jechow,et al.  Imaging of trapped ions with a microfabricated optic for quantum information processing. , 2010, Physical review letters.

[44]  M. B. Plenio,et al.  Quantum gates and memory using microwave-dressed states , 2011, Nature.

[45]  Oxford ion-trap quantum computing project , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  T. Harty High-fidelity microwave-driven quantum logic in intermediate-field 43Ca+ , 2013 .

[47]  T. Monz,et al.  Process tomography of ion trap quantum gates. , 2006, Physical review letters.

[48]  David J. Wineland,et al.  Laser cooling of atoms , 1979 .

[49]  J. P. Home,et al.  Isotope-selective photoionization for calcium ion trapping , 2004 .

[50]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[51]  Andrew Steane,et al.  Fast quantum logic by selective displacement of hot trapped ions , 2003 .

[52]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[53]  M. B. Plenio,et al.  Fast quantum gates for cold trapped ions , 2000, quant-ph/0002092.

[54]  D M Lucas,et al.  Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning , 2011, 1110.1486.

[55]  David J. Wineland,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[56]  L. Vandersypen,et al.  Implementation of a three-quantum-bit search algorithm , 1999, quant-ph/9910075.

[57]  Daniel A Lidar,et al.  Magnetic resonance realization of decoherence-free quantum computation. , 2003, Physical review letters.

[58]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[59]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[60]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[61]  David J. Wineland,et al.  Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic , 2003 .

[62]  Measurement of the magnetic interaction between two bound electrons of two separate ions , 2014, Nature.

[63]  Christoph Becher,et al.  The coherence of qubits based on single Ca+ions , 2003 .

[64]  Min Raj Lamsal Quantum Optics: An Introduction , 2011 .

[65]  Spencer D. Fallek,et al.  Universal control of ion qubits in a scalable microfabricated planar trap , 2015, 1509.05378.

[66]  R. Blatt,et al.  Ion-trap measurements of electric-field noise near surfaces , 2014, 1409.6572.

[67]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[68]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[69]  D. M. Lucas,et al.  Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap , 2013, 1308.2078.

[70]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[71]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[72]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[73]  Muhammad Irfan,et al.  Three-qubit Grover’s algorithm using superconducting quantum interference devices in cavity-QED , 2012, Quantum Inf. Process..

[74]  T. Harty,et al.  High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves. , 2016, Physical review letters.

[75]  C. Ospelkaus,et al.  Surface-electrode Paul trap with optimized near-field microwave control , 2014 .

[76]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[77]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[78]  J J García-Ripoll,et al.  Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. , 2003, Physical review letters.

[79]  A. Ekert,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[80]  F. Mintert,et al.  Ion-trap quantum logic using long-wavelength radiation. , 2001, Physical review letters.

[81]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[82]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[83]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[84]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[85]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[86]  Christopher J. Ballance,et al.  High-Fidelity Quantum Logic in Ca+ , 2017 .

[87]  E. Lucero,et al.  Computing prime factors with a Josephson phase qubit quantum processor , 2012, Nature Physics.

[88]  D M Lucas,et al.  High-fidelity readout of trapped-ion qubits. , 2008, Physical review letters.

[89]  M. B. Plenio,et al.  Driven geometric phase gates with trapped ions , 2013, 1303.5770.

[90]  Vladimir L. Ermakov,et al.  Experimental realization of a continuous version of the Grover algorithm , 2002 .

[91]  Y. Colombe,et al.  Individual-ion addressing with microwave field gradients. , 2012, Physical review letters.

[92]  Y. Colombe,et al.  Efficient fiber optic detection of trapped ion fluorescence. , 2010, Physical review letters.

[93]  L. Viola,et al.  Reducing sequencing complexity in dynamical quantum error suppression by Walsh modulation , 2011, Physical Review A.

[94]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[95]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[96]  M. B. Plenio,et al.  Robust trapped-ion quantum logic gates by continuous dynamical decoupling , 2012 .

[97]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[98]  N. Timoney,et al.  Individual addressing of trapped ions and coupling of motional and spin states using RF radiation. , 2007, Physical review letters.

[99]  Emanuel Knill,et al.  Physics: Quantum computing , 2010, Nature.

[100]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[101]  J. Britton,et al.  Toward scalable ion traps for quantum information processing , 2009, 0909.2464.

[102]  D. M. Lucas,et al.  Scalable simultaneous multiqubit readout with 99.99% single-shot fidelity , 2009, 0906.3304.

[103]  W. Schleich,et al.  Gauss sum factorization with cold atoms. , 2007, Physical review letters.

[104]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[105]  X-Q Zhou,et al.  Experimental realization of Shor's quantum factoring algorithm using qubit recycling , 2011, Nature Photonics.

[106]  E Knill,et al.  Randomized benchmarking of multiqubit gates. , 2012, Physical review letters.

[107]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[108]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[109]  I. V. Inlek,et al.  Coherent error suppression in multiqubit entangling gates. , 2011, Physical review letters.

[110]  D. Allcock Surface-electrode ion traps for scalable quantum computing , 2011 .