Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique.

We develop a new and numerically efficient formalism to describe the general problem of the scattering and absorption of light by a spherical metal or dielectric particle illuminated by a tightly focused beam. The theory is based on (i) the generalized Mie theory equations, (ii) the plane-wave decomposition of the converging light beam, and (iii) the expansion of a plane wave in terms of vector spherical harmonics. The predictions of the model are illustrated in the case of silver nanoparticles. The results are compared with the Mie theory in the local approximation. Finally, some effects related to the convergence of the beam are analyzed in the context of experiments based on the spatial modulation spectroscopy technique.

[1]  B. R. Johnson Light scattering from a spherical particle on a conducting plane. I: Normal incidence , 1992 .

[2]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .

[3]  Bernhard Lamprecht,et al.  Spectroscopy of single metallic nanoparticles using total internal reflection microscopy , 2000 .

[4]  J. Hodges,et al.  Forward scattering of a Gaussian beam by a nonabsorbing sphere. , 1995, Applied optics.

[5]  M. Kerker,et al.  Light scattering in converging beams. , 1977, Optics letters.

[6]  M. Broyer,et al.  Optical extinction spectroscopy of single silver nanoparticles , 2007 .

[7]  J. P. Barton,et al.  Internal and near‐surface electromagnetic fields for a spherical particle irradiated by a focused laser beam , 1988 .

[8]  A. Mikhailovsky,et al.  Broadband near-field interference spectroscopy of metal nanoparticles using a femtosecond white-light continuum. , 2003, Optics letters.

[9]  Norbert F. Scherer,et al.  Ultrafast Dephasing of Single Nanoparticles Studied by Two-Pulse Second-Order Interferometry , 2001 .

[10]  Tigran A. Vartanyan,et al.  Dephasing times of surface plasmon excitation in Au nanoparticles determined by persistent spectral hole burning , 2004 .

[11]  B. R. Johnson Calculation of light scattering from a spherical particle on a surface by the multipole expansion method , 1995 .

[12]  E. Stelzer,et al.  Three-dimensional position detection of optically trapped dielectric particles , 2002 .

[13]  M. Broyer,et al.  Optical Properties of Noble Metal Clusters as a Function of the Size: Comparison between Experiments and a Semi-Quantal Theory , 2006 .

[14]  David R. Smith,et al.  Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles , 2003 .

[15]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[16]  L. W. Davis,et al.  Theory of electromagnetic beams , 1979 .

[17]  Kebin Shi,et al.  Manipulation and spectroscopy of a single particle by use of white-light optical tweezers. , 2005, Optics letters.

[18]  T. Itoh,et al.  Femtosecond light scattering spectroscopy of single gold nanoparticles , 2001 .

[19]  Optimising the image contrast of conventional and confocal optical microscopes imaging finite sized spherical gold scatterers , 1998 .

[20]  Yu-lin Xu,et al.  Efficient Evaluation of Vector Translation Coefficients in Multiparticle Light-Scattering Theories , 1998 .

[21]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[22]  J. Lock Interpretation of Extinction in Gaussian-Beam Scattering , 1995 .

[23]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[24]  Ernst,et al.  Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope , 2000, Physical review letters.

[25]  O. Muskens,et al.  Single metal nanoparticle absorption spectroscopy and optical characterization , 2006 .

[26]  K. Shi,et al.  Optical scattering spectroscopy by using tightly focused supercontinuum. , 2005, Optics express.

[27]  Gérard Gréhan,et al.  Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation , 1988 .

[28]  Wenzel,et al.  Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning , 2000, Physical review letters.

[29]  W. G. Tam,et al.  Scattering of electromagnetic beams by spherical objects , 1978 .

[30]  M. Kerker,et al.  Electromagnetic scattering by a dielectric sphere in a diverging radiation field , 1977 .

[31]  William B. McKnight,et al.  From Maxwell to paraxial wave optics , 1975 .

[32]  M. Broyer,et al.  Direct measurement of the single-metal-cluster optical absorption. , 2004, Physical review letters.

[33]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[34]  Sang Soo Lee,et al.  Scattering of laser beams and the optical potential well for a homogeneous sphere , 1983 .

[35]  V. Sandoghdar,et al.  Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. , 2004, Physical review letters.

[36]  F. Moreno,et al.  Plasmon spectroscopy of metallic nanoparticles above flat dielectric substrates. , 2006, Optics letters.

[37]  Gérard Gréhan,et al.  Scattering of a Gaussian beam by a Mie scatter center using a Bromwich formalism , 1985 .

[38]  T. Götz,et al.  Characterization of large supported metal clusters by optical spectroscopy , 1995 .

[39]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .