A multistep attachment process: Transformation of titanate nanotubes into nanoribbons

[1]  Linhua Hu,et al.  Characteristics of dye-sensitized solar cells based on the TiO2 nanotube/nanoparticle composite electrodes , 2011 .

[2]  Jianmeng Chen,et al.  Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol. , 2010, Environmental science & technology.

[3]  Xiaodong Li,et al.  Template synthesis of N—F-codoped TiO2 nanotubes with high visible light activity , 2009 .

[4]  A. Papa,et al.  Effect of Reaction Parameters on Composition and Morphology of Titanate Nanomaterials , 2009 .

[5]  J. Bernardi,et al.  Stability and photoelectronic properties of layered titanate nanostructures. , 2009, Journal of the American Chemical Society.

[6]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.

[7]  Wei Zhang,et al.  Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries , 2007 .

[8]  C. Tang,et al.  Hydrothermal Treatment Duration Effect on the Transformation of Titanate Nanotubes into Nanoribbons , 2007 .

[9]  D. Bavykin,et al.  Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications , 2006 .

[10]  P. Umek,et al.  Mechanical properties of titania-derived nanoribbons , 2006 .

[11]  H. Teng,et al.  Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments. , 2006 .

[12]  Jiaguo Yu,et al.  Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons , 2006 .

[13]  D. Bavykin,et al.  Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. , 2005, The journal of physical chemistry. B.

[14]  Baomei Wen,et al.  Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires , 2005 .

[15]  M. Osada,et al.  Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. , 2005, The journal of physical chemistry. B.

[16]  Haoshen Zhou,et al.  A simple method to synthesize nanowires titanium dioxide from layered titanate particles , 2004 .

[17]  D. Bavykin,et al.  The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes , 2004 .

[18]  B. Su,et al.  Titanium oxide nanotubes, nanofibers and nanowires , 2004 .

[19]  A. R. Armstrong,et al.  TiO2‐B Nanowires , 2004 .

[20]  Ning Wang,et al.  Formation mechanism of TiO2 nanotubes , 2003 .

[21]  Lianmao Peng,et al.  Trititanate Nanotubes Made via a Single Alkali Treatment. , 2002 .

[22]  B. Su,et al.  Titanium oxide nanoribbons , 2002 .

[23]  Lianmao Peng,et al.  The structure of trititanate nanotubes. , 2002, Acta crystallographica. Section B, Structural science.

[24]  S. Yoshikawa,et al.  Dye-sensitized Solar Cells Using Semiconductor Thin Film Composed of Titania Nanotubes , 2002 .

[25]  M. Shirai,et al.  Application of Titania Nanotubes to a Dye-sensitized Solar Cell , 2002 .

[26]  S. Koutsopoulos Kinetic Study on the Crystal Growth of Hydroxyapatite , 2001 .

[27]  A. Putnis,et al.  Molecular-scale mechanisms of crystal growth in barite , 1998, Nature.

[28]  Koichi Niihara,et al.  Formation of titanium oxide nanotube , 1998 .

[29]  D. W. Hoffman,et al.  A Vector Thermodynamics for Anisotropic Surfaces—II. Curved and Faceted Surfaces , 1974 .

[30]  D. Harker,et al.  A new law of crystal morphology extending the law of Bravais , 1937 .

[31]  The,et al.  A NEW LAW OF CRYSTAL MORPHOLOGY EXTENDING THE LAW OF BRAVAIS , 2007 .

[32]  N. Ming,et al.  Sequence of Events for the Formation of Titanate Nanotubes, Nanofibers, Nanowires, and Nanobelts , 2006 .

[33]  P. Bruce,et al.  TiO(2)-B nanowires. , 2004, Angewandte Chemie.

[34]  M. Shirai,et al.  Hydrothermal Synthesis of Titania Nanotube and its Application for Dye- Sensitized Solar Cell , 2003 .

[35]  Jennifer Cahn,et al.  A vector thermodlnamics for anisotropic surfaces—II. Curved and faceted surfaces , 1974 .