The ELBA Force Field for Coarse-Grain Modeling of Lipid Membranes

A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent) features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (). Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylethanolamine (DOPE) in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC) in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids); this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities.

[1]  D. Marsh,et al.  Phospholipid Bilayers: Physical Principles and Models , 1987 .

[2]  Graham Hills,et al.  The computer simulation of polar liquids , 1979 .

[3]  Julien Michel,et al.  Coarse-grain modelling of DMPC and DOPC lipid bilayers , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  Sergei Izvekov,et al.  Multiscale Coarse-Graining of Mixed Phospholipid/Cholesterol Bilayers. , 2006, Journal of chemical theory and computation.

[5]  Jeremy Pencer,et al.  Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. , 2008, Biophysical journal.

[6]  Wilfred F. van Gunsteren,et al.  A new force field for simulating phosphatidylcholine bilayers , 2010, J. Comput. Chem..

[7]  J. Crabbe,et al.  Molecular modelling: Principles and applications , 1997 .

[8]  Daniel L. Parton,et al.  Aggregation of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. , 2011, Biophysical journal.

[9]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[10]  Paul Tavan,et al.  A fast multipole method combined with a reaction field for long-range electrostatics in molecular dynamics simulations: The effects of truncation on the properties of water , 2003 .

[11]  Arnau Cordomí,et al.  Effect of ions on a dipalmitoyl phosphatidylcholine bilayer. a molecular dynamics simulation study. , 2008, The journal of physical chemistry. B.

[12]  J. S. Rowlinson,et al.  The second virial coefficients of polar gases , 1949 .

[13]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[14]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[15]  A. Kusumi,et al.  Hydrogen Bonding of Water to Phosphatidylcholine in the Membrane As Studied by a Molecular Dynamics Simulation: Location, Geometry, and Lipid-Lipid Bridging via Hydrogen-Bonded Water , 1997 .

[16]  G. Büldt,et al.  Zwitterionic dipoles as a dielectric probe for investigating head group mobility in phospholipid membranes. , 1978, Biochimica et biophysica acta.

[17]  Y. Kimura,et al.  Organ-Specific Distributions of Lysophosphatidylcholine and Triacylglycerol in Mouse Embryo , 2009, Lipids.

[18]  David van der Spoel,et al.  The Origin of Layer Structure Artifacts in Simulations of Liquid Water. , 2006, Journal of chemical theory and computation.

[19]  D. Uhríková,et al.  Bilayer thickness and lipid interface area in unilamellar extruded 1,2-diacylphosphatidylcholine liposomes: a small-angle neutron scattering study. , 2001, Biochimica et biophysica acta.

[20]  T. Piggot,et al.  Stability and Membrane Orientation of the Fukutin Transmembrane Domain: A Combined Multiscale Molecular Dynamics and Circular Dichroism Study , 2010, Biochemistry.

[21]  Arieh Warshel,et al.  Calculations of chemical processes in solutions , 1979 .

[22]  R. Templer,et al.  Sensing isothermal changes in the lateral pressure in model membranes using di-pyrenyl phosphatidylcholine. , 1998, Faraday discussions.

[23]  E. Disalvo,et al.  Effect of phloretin on the dipole potential of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol monolayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[24]  D. Huster,et al.  Water permeability of polyunsaturated lipid membranes measured by 17O NMR. , 1997, Biophysical journal.

[25]  C. Lee,et al.  All-optical measurements of the bending rigidity of lipid-vesicle membranes across structural phase transitions. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  D. Eisenberg Proteins. Structures and molecular properties, T.E. Creighton. W. H. Freeman and Company, New York (1984), 515, $36.95 , 1985 .

[27]  Mark S.P. Sansom,et al.  Molecular simulations and biomembranes : from biophysics to function , 2010 .

[28]  S. Bezrukov Functional consequences of lipid packing stress , 2000 .

[29]  Ole G. Mouritsen,et al.  Life - As a Matter of Fat , 2004 .

[30]  B. Smit,et al.  Phase behavior of model lipid bilayers. , 2005, The journal of physical chemistry. B.

[31]  D. Tobias,et al.  Electrostatics calculations: recent methodological advances and applications to membranes. , 2001, Current opinion in structural biology.

[32]  R. Templer,et al.  Gaussian curvature modulus of an amphiphilic monolayer , 1998 .

[33]  R. Cantor Lateral Pressures in Cell Membranes: A Mechanism for Modulation of Protein Function , 1997 .

[34]  Reinhard Lipowsky,et al.  Structure and dynamics of membranes , 1995 .

[35]  M. Tate,et al.  Energetics of a hexagonal-lamellar-hexagonal-phase transition sequence in dioleoylphosphatidylethanolamine membranes. , 1992, Biochemistry.

[36]  Marcus Mueller,et al.  Biological and synthetic membranes: What can be learned from a coarse-grained description? , 2006 .

[37]  R. Templer,et al.  Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Masuhiro Mikami,et al.  Comparative molecular dynamics study of ether- and ester-linked phospholipid bilayers. , 2004, The Journal of chemical physics.

[39]  B. Eichinger,et al.  Dielectric constants of simple liquids: stockmayer and ellipsoidal fluids. , 2010, The journal of physical chemistry. B.

[40]  P. O'shea Physical landscapes in biological membranes: physico–chemical terrains for spatio–temporal control of biomolecular interactions and behaviour , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  A. Demchenko,et al.  Nanoscopic description of biomembrane electrostatics: results of molecular dynamics simulations and fluorescence probing. , 2009, Chemistry and physics of lipids.

[42]  M. V. Leeuwen Derivation of Stockmayer potential parameters for polar fluids , 1994 .

[43]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[44]  W. Shinoda,et al.  Molecular Dynamics Study on Electrostatic Properties of a Lipid Bilayer: Polarization, Electrostatic Potential, and the Effects on Structure and Dynamics of Water near the Interface , 1998 .

[45]  N Bignell,et al.  Recommended table for the density of water between 0 ?C and 40 ?C based on recent experimental reports , 2001 .

[46]  M. Kozlov,et al.  Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. , 2005, Biochemistry.

[47]  S. Dodd,et al.  Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by (2)H NMR spectroscopy. , 2000, Biophysical journal.

[48]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[49]  Thomas E. Cheatham,et al.  The flying ice cube: Velocity rescaling in molecular dynamics leads to violation of energy equipartition , 1998, J. Comput. Chem..

[50]  Wilfred F van Gunsteren,et al.  A simple, efficient polarizable coarse-grained water model for molecular dynamics simulations. , 2011, The Journal of chemical physics.

[51]  Y. Antonenko,et al.  Membrane dipole potential modulates proton conductance through gramicidin channel: movement of negative ionic defects inside the channel. , 2002, Biophysical journal.

[52]  Martin Neumann,et al.  Dipole moment fluctuation formulas in computer simulations of polar systems , 1983 .

[53]  R. Rand,et al.  The influence of cholesterol on phospholipid membrane curvature and bending elasticity. , 1997, Biophysical journal.

[54]  G. Lindblom,et al.  The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. , 2003, Biophysical journal.

[55]  J. Essex,et al.  Dual-resolution molecular dynamics simulation of antimicrobials in biomembranes , 2011, Journal of The Royal Society Interface.

[56]  R. Suter,et al.  Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. , 1993, Biophysical journal.

[57]  Carl-Johan Högberg,et al.  A molecular dynamics investigation of the influence of hydration and temperature on structural and dynamical properties of a dimyristoylphosphatidylcholine bilayer. , 2006, The journal of physical chemistry. B.

[58]  L. Nilsson,et al.  On the truncation of long-range electrostatic interactions in DNA. , 2000, Biophysical journal.

[59]  Alexander P. Lyubartsev,et al.  Recent development in computer simulations of lipid bilayers , 2011 .

[60]  Michele Cascella,et al.  A Nonradial Coarse-Grained Potential for Proteins Produces Naturally Stable Secondary Structure Elements. , 2010, Journal of chemical theory and computation.

[61]  Guido Germano,et al.  Expressions for forces and torques in molecular simulations using rigid bodies , 2006, cond-mat/0608387.

[62]  Kostas Kostarelos,et al.  Tumor targeting of functionalized quantum dot-liposome hybrids by intravenous administration. , 2009, Molecular pharmaceutics.

[63]  V A Parsegian,et al.  Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. , 1992, Biophysical journal.

[64]  Berk Hess,et al.  Improving Efficiency of Large Time-Scale Molecular Dynamics Simulations of Hydrogen-Rich Systems , 1999 .

[65]  J. Nagle,et al.  Diffuse scattering provides material parameters and electron density profiles of biomembranes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  E. Lindahl,et al.  3D pressure field in lipid membranes and membrane-protein complexes. , 2009, Physical review letters.

[67]  W G Richards,et al.  Molecular dynamics simulation of a hydrated phospholipid bilayer. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  Ronald M. Levy,et al.  Computer simulations of the dielectric properties of water: Studies of the simple point charge and transferrable intermolecular potential models , 1989 .

[69]  David A. C. Beck,et al.  Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides. , 2005, Biochemistry.

[70]  Jonathan W Essex,et al.  A quantitative coarse-grain model for lipid bilayers. , 2008, The journal of physical chemistry. B.

[71]  H. Akutsu,et al.  Conformational analysis of the polar head group in phosphatidylcholine bilayers: a structural change induced by cations. , 1991, Biochemistry.

[72]  I. Vattulainen,et al.  Role of sterol type on lateral pressure profiles of lipid membranes affecting membrane protein functionality: Comparison between cholesterol, desmosterol, 7-dehydrocholesterol and ketosterol. , 2007, Journal of structural biology.

[73]  E. Evans,et al.  Effect of chain length and unsaturation on elasticity of lipid bilayers. , 2000, Biophysical journal.

[74]  Joseph Ford,et al.  Numerical Experiments on the Stochastic Behavior of a Lennard-Jones Gas System , 1973 .

[75]  Jonathan W. Essex,et al.  Molecular dynamics simulation of the hydrocarbon region of a biomembrane using a reduced representation model , 2001, J. Comput. Chem..

[76]  Yi Liu,et al.  The static dielectric constant of the soft sticky dipole model of liquid water: Monte Carlo simulation , 1996 .

[77]  A. Postle,et al.  Acyl chain-based molecular selectivity for HL60 cellular phosphatidylinositol and of phosphatidylcholine by phosphatidylinositol transfer protein alpha. , 2004, Biochimica et biophysica acta.

[78]  N. Turner,et al.  Electric field strength of membrane lipids from vertebrate species: membrane lipid composition and Na+-K+-ATPase molecular activity. , 2005, American journal of physiology. Regulatory, integrative and comparative physiology.

[79]  P. O'shea,et al.  Intermolecular interactions with/within cell membranes and the trinity of membrane potentials: kinetics and imaging. , 2003, Biochemical Society transactions.

[80]  J. Nagle,et al.  Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. , 1998, Biophysical journal.

[81]  Lennart Nilsson,et al.  Structure and dynamics of liquid water with different long‐range interaction truncation and temperature control methods in molecular dynamics simulations , 2002, J. Comput. Chem..

[82]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[83]  William L. Jorgensen,et al.  Temperature and size dependence for Monte Carlo simulations of TIP4P water , 1985 .

[84]  G. Lindblom,et al.  Influence of Cholesterol and Water Content on Phospholipid Lateral Diffusion in Bilayers , 2003 .

[85]  Fred J Sigworth,et al.  Using cryo-EM to measure the dipole potential of a lipid membrane , 2006, Proceedings of the National Academy of Sciences.

[86]  C. Brooks Computer simulation of liquids , 1989 .

[87]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[88]  Toshiko Ichiye,et al.  Soft Sticky Dipole Potential for Liquid Water: A New Model , 1996 .

[89]  Wataru Shinoda,et al.  Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. , 2010, The journal of physical chemistry. B.

[90]  E. Evans,et al.  Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. , 1988, Biochemistry.

[91]  Sagar A. Pandit,et al.  Multiscale simulations of heterogeneous model membranes. , 2009, Biochimica et biophysica acta.

[92]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[93]  Ole G. Mouritsen,et al.  Life - as a matter of fat : the emerging science of lipidomics , 2005 .

[94]  Julien Michel,et al.  Prediction of partition coefficients by multiscale hybrid atomic-level/coarse-grain simulations. , 2008, The journal of physical chemistry. B.

[95]  Yoshiteru Yonetani,et al.  A severe artifact in simulation of liquid water using a long cut-off length: Appearance of a strange layer structure , 2005 .

[96]  J. D. Gezelter,et al.  Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. , 2006, The Journal of chemical physics.

[97]  Jonathan W. Essex,et al.  Permeability of drugs and hormones through a lipid bilayer: insights from dual-resolution molecular dynamics† , 2010 .

[98]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[99]  Thomas Huber,et al.  Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. , 2006, Biophysical journal.

[100]  M. Holz,et al.  Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements , 2000 .

[101]  B. Leimkuhler,et al.  Symplectic splitting methods for rigid body molecular dynamics , 1997 .

[102]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems. XIX. Mesophases formed by the Gay-Berne model mesogen , 1990 .

[103]  E. Evans,et al.  Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids. , 2008, Biophysical journal.

[104]  Giulio Milazzo,et al.  Bioelectrochemistry of Membranes , 2004 .

[105]  M. Ueno,et al.  Evaluation of phase transition temperature of liposomes by using the tautomerism of α-Benzoylacetoanilide , 1990 .

[106]  M. Alderton,et al.  Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry , 1984 .

[107]  Durba Sengupta,et al.  Polarizable Water Model for the Coarse-Grained MARTINI Force Field , 2010, PLoS Comput. Biol..

[108]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[109]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[110]  Graham Richards,et al.  Intermolecular forces , 1978, Nature.

[111]  Jonathan W Essex,et al.  Permeability of small molecules through a lipid bilayer: a multiscale simulation study. , 2009, The journal of physical chemistry. B.

[112]  P. Steponkus,et al.  Phase diagram of 1,2-dioleoylphosphatidylethanolamine (DOPE):water system at subzero temperatures and at low water contents. , 1999, Biochimica et biophysica acta.

[113]  M. Berkowitz,et al.  Structure and dynamics of water at the interface with phospholipid bilayers. , 2005, The Journal of chemical physics.

[114]  A. Postle,et al.  Highly Saturated Endonuclear Phosphatidylcholine Is Synthesizedin Situ and Colocated with CDP-choline Pathway Enzymes* , 2001, The Journal of Biological Chemistry.

[115]  D. Marsh,et al.  Protein modulation of lipids, and vice-versa, in membranes. , 2008, Biochimica et biophysica acta.

[116]  S. Feller,et al.  Molecular dynamics simulation study of correlated motions in phospholipid bilayer membranes. , 2009, The journal of physical chemistry. B.

[117]  A. Mark,et al.  Simulation of the spontaneous aggregation of phospholipids into bilayers. , 2001, Journal of the American Chemical Society.

[118]  J. Nagle,et al.  Lecithin bilayers. Density measurement and molecular interactions. , 1978, Biophysical journal.

[119]  M. Muir Physical Chemistry , 1888, Nature.

[120]  H. Berendsen,et al.  A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field , 1998 .

[121]  A. Sum,et al.  Molecular simulation study of structural and dynamic properties of mixed DPPC/DPPE bilayers. , 2006, Biophysical journal.

[122]  Cleaver,et al.  Extension and generalization of the Gay-Berne potential. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[123]  I. Bivas,et al.  Temperature and Chain Length Effects on Bending Elasticity of Phosphatidylcholine Bilayers , 1994 .

[124]  W. Bernhard,et al.  Lipidomics of cellular and secreted phospholipids from differentiated human fetal type II alveolar epithelial cellss⃞ , 2006, Journal of Lipid Research.

[125]  Helgi I. Ingólfsson,et al.  Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes , 2010, Journal of The Royal Society Interface.

[126]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems: VIII. The Lebwohl-Lasher model of nematogens revisited , 1982 .

[127]  K V Damodaran,et al.  A comparison of DMPC- and DLPE-based lipid bilayers. , 1994, Biophysical journal.

[128]  Ronald J Clarke,et al.  Hydrophobic ion hydration and the magnitude of the dipole potential. , 2002, Biophysical journal.

[129]  Mark L. Zeidel,et al.  Structural Determinants of Water Permeability through the Lipid Membrane , 2008, The Journal of general physiology.

[130]  D. Marsh Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. , 2007, Biophysical journal.

[131]  Ilpo Vattulainen,et al.  Lipid Bilayers Driven to a Wrong Lane in Molecular Dynamics Simulations by Subtle Changes in Long-Range Electrostatic Interactions , 2004 .

[132]  S. Mukhin,et al.  Analytical derivation of thermodynamic characteristics of lipid bilayer from a flexible string model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[133]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[134]  Göran Lindblom,et al.  ‘Life – as a matter of fat’ : The emerging science of lipidomics , 2005 .

[135]  J. Nagle,et al.  Temperature dependence of structure, bending rigidity, and bilayer interactions of dioleoylphosphatidylcholine bilayers. , 2008, Biophysical journal.

[136]  A. Lyubartsev,et al.  Effect of local anesthetic lidocaine on electrostatic properties of a lipid bilayer. , 2008, Biophysical journal.

[137]  M. Klein,et al.  Computer simulation studies of biomembranes using a coarse grain model , 2002 .

[138]  A. Harasima Molecular Theory of Surface Tension , 2007 .

[139]  R. Hentschke,et al.  Phase behavior of the Stockmayer fluid via molecular dynamics simulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[140]  D. Tildesley,et al.  The free surface of water: molecular orientation, surface potential and nonlinear susceptibility , 1997 .

[141]  J. Perram,et al.  Computer simulation of the static dielectric constant of systems with permanent electric dipoles. , 1986, Annual review of physical chemistry.

[142]  J. Hadgraft,et al.  Influence of molecular dipoles on human skin permeability: Use of 6-ketocholestanol to enhance the transdermal delivery of bacitracin. , 2003, Journal of pharmaceutical sciences.

[143]  H. L. Scott,et al.  Modeling the lipid component of membranes. , 2002, Current opinion in structural biology.

[144]  Michael W. Mahoney,et al.  A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions , 2000 .

[145]  A. Blume,et al.  A comparative study of diffusive and osmotic water permeation across bilayers composed of phospholipids with different head groups and fatty acyl chains. , 1995, Biophysical journal.

[146]  J. Essex The Application of the Reaction-Field Method to the Calculation of Dielectric Constants , 1998 .

[147]  Anthony G Lee,et al.  How lipids affect the activities of integral membrane proteins. , 2004, Biochimica et biophysica acta.

[148]  R. Rand,et al.  Structural dimensions and their changes in a reentrant hexagonal-lamellar transition of phospholipids. , 1994, Biophysical journal.

[149]  Wilfred F. van Gunsteren,et al.  Consistent dielectric properties of the simple point charge and extended simple point charge water models at 277 and 300 K , 1994 .

[150]  A. J. Hulbert,et al.  Differences in membrane acyl phospholipid composition between an endothermic mammal and an ectothermic reptile are not limited to any phospholipid class , 2007, Journal of Experimental Biology.

[151]  J. Killian,et al.  Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. , 2004, Biochimica et biophysica acta.

[152]  M. Holz,et al.  Biological applications of scanning tunnelling microscopy , 1993 .

[153]  D. Cafiso Dipole potentials and spontaneous curvature: membrane properties that could mediate anesthesia. , 1998, Toxicology letters.

[154]  G. Voth,et al.  Flexible simple point-charge water model with improved liquid-state properties. , 2006, The Journal of chemical physics.

[155]  Robert Blumenthal,et al.  Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. , 2009, Critical reviews in therapeutic drug carrier systems.

[156]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[157]  Erik G. Brandt,et al.  Determination of electron density profiles and area from simulations of undulating membranes. , 2011, Biophysical journal.

[158]  B. Berne Modification of the overlap potential to mimic a linear site-site potential , 1981 .

[159]  R. Rand,et al.  The effects of acyl chain length and saturation of diacylglycerols and phosphatidylcholines on membrane monolayer curvature. , 2002, Biophysical journal.

[160]  Syma Khalid,et al.  Coarse-grained molecular dynamics simulations of membrane proteins and peptides. , 2007, Journal of structural biology.

[161]  Kathryn M Mayer,et al.  Probing the lipid membrane dipole potential by atomic force microscopy. , 2008, Biophysical journal.

[162]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[163]  R. Clarke The dipole potential of phospholipid membranes and methods for its detection. , 2001, Advances in colloid and interface science.

[164]  R. Templer,et al.  Inverse lyotropic phases of lipids and membrane curvature , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.