Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1

[1]  M. Gibson,et al.  Three-dimensional characterisation of the microstructure of an high entropy alloy using STEM/HAADF tomography , 2015 .

[2]  Daniel B. Miracle,et al.  Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys , 2014, JOM.

[3]  Oleg N. Senkov,et al.  Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys , 2014 .

[4]  Daniel E. Huber,et al.  Development and application of MIPAR™: a novel software package for two- and three-dimensional microstructural characterization , 2014, Integrating Materials and Manufacturing Innovation.

[5]  David J. Smith,et al.  Atomic-scale Chemical Imaging and Quantification of Metallic Alloy Structures by Energy-Dispersive X-ray Spectroscopy , 2014, Scientific Reports.

[6]  Mark A. Gibson,et al.  Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl. , 2013, Ultramicroscopy.

[7]  Oleg N. Senkov,et al.  Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis (Postprint) , 2013 .

[8]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[9]  P. Liaw,et al.  Solid‐Solution Phase Formation Rules for Multi‐component Alloys , 2008 .

[10]  J. Yeh,et al.  Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements , 2005 .

[11]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[12]  Stephen J. Pennycook,et al.  Z-contrast stem for materials science , 1989 .

[13]  B. S. Murty,et al.  Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy , 2011 .