Field-dependent nonlinear piezoelectricity: a focused review

ABSTRACT This contribution presents a multidisciplinary review of the so-called field-dependent nonlinear piezoelectricity. It starts with an introduction that poses the literature analysis framework, through defining this operational (that is often met in practice) piezoelectric field-dependent nonlinearity. Indeed, the latter is a less known phenomenon although it is inherent to stress-free actuation responses of corresponding smart materials, actuators and structures. Then, related experimental observations from piezoelectric materials, actuator devices and smart structures tests are multidisciplinary surveyed for understanding the underlying mechanisms of the encountered field-dependent nonlinearity. Next, empirical material and numerical structural modelling and simulation approaches are critically reviewed from, respectively, the constitutive and finite element analysis points of view. Summary conclusions and few future directions for research are finally provided as a closure. It is worth mentioning that, although it is concise (retains only experiments and experimentally-correlated models and simulations), this critical review covers the last three decades period which is almost the whole age of the piezoelectric materials, actuators and smart structures research field.

[1]  Aditi Chattopadhyay,et al.  Modeling of smart composite box beams with nonlinear induced strain , 1999 .

[2]  Aditi Chattopadhyay,et al.  Nonlinear actuation of smart composites using a coupled piezoelectric-mechanical model , 2001 .

[3]  Ayech Benjeddou,et al.  A ferroelectric and ferroelastic 3D hexahedral curvilinear finite element , 2011 .

[4]  Ayech Benjeddou,et al.  A FSDT—MITC Piezoelectric Shell Finite Element with Ferroelectric Non-linearity , 2009 .

[5]  Ayech Benjeddou,et al.  Piezoelectric d15 shear response-based torsion actuation mechanism: an experimental benchmark and its 3D finite element simulation , 2010 .

[6]  Liping Huang,et al.  Electroelastic equations describing slow hysteresis in polarized ferroelectric ceramic plates , 1998 .

[7]  Victor Giurgiutiu,et al.  High-Field Characterization of Piezoelectric and Magnetostrictive Actuators , 2004 .

[8]  Horst Beige,et al.  Nonlinearity of soft PZT piezoceramic for shear and torsional actuator applications , 1998, ISAF 1998. Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics (Cat. No.98CH36245).

[9]  L. E. Cross,et al.  Characteristics of shear mode piezoelectric actuators , 1996, ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics.

[10]  Sven Klinkel,et al.  A geometrically and materially non‐linear piezoelectric three‐dimensional‐beam finite element formulation including warping effects , 2008 .

[11]  L. E. Cross,et al.  Domain wall excitations and their contributions to the weak‐signal response of doped lead zirconate titanate ceramics , 1988 .

[12]  Ayech Benjeddou,et al.  Analysis of the sensitivity to pressure and temperature of a membrane based SAW sensor , 2017 .

[13]  A. Albareda,et al.  Evaluation of domain wall motion in lead zirconate titanate ceramics by nonlinear response measurements , 2008 .

[14]  P. Hagedorn,et al.  PIEZO–BEAM SYSTEMS SUBJECTED TO WEAK ELECTRIC FIELD: EXPERIMENTS AND MODELLING OF NON-LINEARITIES , 2002 .

[15]  Keith A. Seffen,et al.  Net shape formed spiral and helical piezoelectric actuators , 2002 .

[16]  S. Joshi Non-linear constitutive relations for piezoceramic materials , 1992 .

[17]  Jack R. Vinson,et al.  Adhesive Layer Effects in Surface-Mounted Piezoelectric Actuators , 2002 .

[18]  A. J. Masys,et al.  Piezoelectric strain in lead zirconate titante ceramics as a function of electric field, frequency, and dc bias , 2003 .

[19]  Wei Ren,et al.  Nonlinear behavior of piezoelectric lead zinc niobate-lead titanate single crystals under ac electric fields and dc bias , 2003 .

[20]  Jae-Hung Han,et al.  Development of a piezoelectric unimorph using a mechanically pre-stressed substrate , 2009 .

[21]  Neil Genzlinger A. and Q , 2006 .

[22]  Kenneth B. Lazarus,et al.  Induced strain actuation of isotropic and anisotropic plates , 1991 .

[23]  Kazuhiko Yamanouchi,et al.  Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate , 1987 .

[24]  Jiong Tang,et al.  High Authority and Nonlinearity Issues in Active-Passive Hybrid Piezoelectric Networks for Structural Damping , 2000 .

[25]  Sven Klinkel,et al.  A constitutive model for magnetostrictive and piezoelectric materials , 2009 .

[26]  Wolfgang Seemann,et al.  Studies on rate-dependent switching effects of piezoelectric materials using a finite element model , 2006 .

[27]  Ayech Benjeddou,et al.  Static experimentations of the piezoceramic d15-shear actuation mechanism for sandwich structures with opposite or same poled patches-assembled core and composite faces , 2011 .

[28]  Xiaoning Jiang,et al.  Piezoelectric d36 in-plane shear-mode of lead-free BZT-BCT single crystals for torsion actuation , 2017 .

[29]  Qiming Zhang,et al.  NONLINEARITY AND SCALING BEHAVIOR IN DONOR-DOPED LEAD ZIRCONATE TITANATE PIEZOCERAMIC , 1998 .

[30]  V. D. Kugel,et al.  Behavior of soft piezoelectric ceramics under high sinusoidal electric fields , 1998 .

[31]  Bintang Yang,et al.  Non-linear modelling of multilayer piezoelectric actuators in non-trivial configurations based on actuator design parameters and piezoelectric material properties , 2012 .

[32]  Leslie E. Cross,et al.  THE EXTRINSIC NATURE OF NONLINEAR BEHAVIOR OBSERVED IN LEAD ZIRCONATE TITANATE FERROELECTRIC CERAMIC , 1991 .

[33]  Ayech Benjeddou,et al.  Finite element characterization and parametric analysis of the nonlinear behaviour of an actual d15 shear MFC , 2013 .

[34]  E. Crawley,et al.  Detailed models of piezoceramic actuation of beams , 1989 .

[35]  Harry F. Tiersten,et al.  Electroelastic equations for electroded thin plates subject to large driving voltages , 1993 .

[36]  Takaaki Tsurumi,et al.  Nonlinear shear responses of lead zirconate titanate piezoelectric ceramics , 2010 .

[37]  H. F. Tiersten,et al.  Nonlinear electroelastic equations for small fields superposed on a bias , 1973 .

[38]  Yann Pasco,et al.  A Hybrid Analytical/Numerical Model of Piezoelectric Stack Actuators Using a Macroscopic Nonlinear Theory of Ferroelectricity and a Preisach Model of Hysteresis , 2004 .

[39]  Barbara Kaltenbacher,et al.  Finite Element Formulation for Ferroelectric Hysteresis of Piezoelectric Materials , 2010 .

[40]  Marc Kamlah,et al.  Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics , 1999 .

[41]  Daniel J. Inman,et al.  Nonlinear Response of the Macro Fiber Composite Actuator to Monotonically Increasing Excitation Voltage , 2006 .

[42]  Dragan Damjanovic,et al.  Toward a unified description of nonlinearity and frequency dispersion of piezoelectric and dielectric responses in Pb(Zr,Ti)O3 , 2005 .

[43]  A. Benjeddou,et al.  Numerical and experimental characterizations of longitudinally polarized piezoelectric d15 shear macro-fiber composites , 2013 .

[44]  Michael Krommer,et al.  Piezoceramic d 15 shear-induced direct torsion actuation mechanism: a new representative experimental benchmark , 2013 .

[45]  Christopher S. Lynch,et al.  The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT , 1996 .

[46]  J. Zhao,et al.  Effect of Driving Field and Temperature on the Response Behavior of Ferroelectric Actuator and Sensor Materials , 1995 .

[47]  Jae-Hung Han,et al.  Prediction of actuation displacement and the force of a pre-stressed piezoelectric unimorph (PUMPS) considering nonlinear piezoelectric coefficient and elastic modulus , 2010 .

[48]  Edward F. Crawley,et al.  Induced strain actuation of isotropic and anisotropic plates , 1989 .

[49]  Yasuhide Shindo,et al.  Dynamic Electromechanical Response and Self-Sensing of Functionally Graded Piezoelectric Cantilever Transducers , 2009 .

[50]  M. Ghasemi-Nejhad,et al.  Manufacturing and Testing of Active Composite Panels with Embedded Piezoelectric Sensors and Actuators , 2005 .

[51]  Ayech Benjeddou,et al.  Finite element characterisation of multilayer d31 piezoelectric macro-fibre composites , 2016 .

[52]  A. Benjeddou,et al.  Determination of the Parameters of Ogden's Law Using Biaxial Data and Levenberg-Marquardt- Fletcher Algorithm , 1993 .

[53]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[54]  D. A. Kim Nonlinearity in piezoelectric ceramics , 2002 .

[55]  L. E. Cross,et al.  Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields , 1999 .

[56]  V. Mueller,et al.  Shear response of lead zirconate titanate piezoceramics , 1998 .

[57]  Shashank Priya,et al.  Enhanced torsional actuation and stress coupling in Mn-modified 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO3 lead-free piezoceramic system , 2017, Science and technology of advanced materials.

[58]  Robert M. McMeeking,et al.  On the evolution of the linear material properties of PZT during loading history—an experimental study , 2005 .

[59]  Chiang-Ho Cheng,et al.  The poling design of a shear mode piezoelectric actuator , 2005 .

[60]  Peter Hagedorn,et al.  Finite element modeling of nonlinear vibration behavior of piezo-integrated structures , 2013 .