Specific Heat of Dilute Alloys of the Transition Metals in Nickel

The specific heat of nickel-based dilute alloys with the metals of the three transition series have been measured in the 1.2-10-K range with a precision of 0.1%. The electronic-specific-heat coefficient increases per unit impurity concentration at infinite dilution (in mJ/${\mathrm{K}}^{2}$ mole per unit atomic concentration) are $\frac{d\ensuremath{\gamma}}{\mathrm{dc}}{|}_{0}=18, 30, 43, \ensuremath{-}13$ for Ti, V, Cr, Mn, respectively (first series). For the second series, we found 35, 48, 40, - 1.5, 2.5 for Nb, Mo, Ru, Rh, and Pd. For the third series (Ta, W, Re, Os, Ir, and Pt) the results are 34, 44, 54, 69, 29, and 14. In the three series, a strong $\ensuremath{\gamma}$ increase is to be noticed when the virtual bound state repelled by the impurity potential from the majority-spin band $d\ensuremath{\uparrow}$ crosses the Fermi level. However, the agreement with the present state of the theory is only qualitative; it was found that when the virtual bound state sits at the Fermi level, the $\frac{d\ensuremath{\gamma}}{\mathrm{dc}}{|}_{0}$ values are much higher than expected. They remain important when the virtual bound state is well above the Fermi level, the expected value being zero in this case. The same qualitative agreement and quantitative discrepancies between theory and experiment also arise for nonmagnetic impurities in non-transition-metal matrices.

[1]  C. A. Swenson,et al.  Effects of Temperature Scale Differences on the Analysis of Heat Capacity Data: The Specific Heat of Copper from 1 to 30 K , 1972 .

[2]  F. Gautier,et al.  Conduction a deux bandes et effet de periode dans les alliages a base de nickel et de cobalt , 1970 .

[3]  F. Gautier,et al.  EFFET DE PÉRIODE DANS LES ALLIAGES A BASE DE MÉTAUX DE TRANSITION , 1970 .

[4]  F. Gautier,et al.  Analyse du pouvoir thermoelectrique d'alliages de nickel dans un modele de conduction a deux bandes , 1969 .

[5]  F. Ducastelle,et al.  Chaleur Specifique Electronique Et Susceptibilite Magnetique Des Carbures De Transition Hexagonaux De Formule M2C , 1969 .

[6]  R. Aoki,et al.  Non-Magnetic Localized State in Aluminum. II. Specific Heat and Magnetic Susceptibility , 1969 .

[7]  Albert Fert,et al.  Two-Current Conduction in Nickel , 1968 .

[8]  R. L. Streever Nuclear-Magnetic-Resonance Studies of Mn55 in Ni-Mn Alloys , 1968 .

[9]  J. C. Ho,et al.  Low-Temperature Specific Heat of Face-Centered Cubic Ni-Co Alloys , 1968 .

[10]  T. Holden,et al.  The low-temperature specific heats of some nickel-based iron and copper alloys , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  I. Campbell,et al.  Remarks on the electronic structure of transition metal alloys , 1968 .

[12]  T. Holden,et al.  The low temperature specific heats of some pure metals (Cu, Ag, Pt, Al, Ni, Fe, Co) , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  P. Beck,et al.  Low-Temperature Specific Heat of Ni-Base fcc Solid Solutions with Cu, Zn, Al, Si, and Sb , 1964 .

[14]  S. Charap,et al.  Deviations from T 32 Law for Magnetization of Ferrometals: Ni, Fe, and Fe+3% Si , 1963 .

[15]  Philip W. Anderson,et al.  Localized Magnetic States in Metals , 1961 .

[16]  J. Crangle,et al.  The magnetization of ferromagnetic binary alloys of cobalt or nickel with elements of the palladium and platinum groups , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[17]  E. Claridge,et al.  Low-Temperature Elastic Constants and Specific Heats of F.C.C. Nickel–Iron Alloys , 1968 .

[18]  P. Beck,et al.  Low-temperature specific heat of F.C.C alloys of 3d-transition elements , 1964 .