Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia

[1]  A. Curtis,et al.  Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: the rise of benthic suspension feeding , 2015, Geobiology.

[2]  R. Wood,et al.  Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments , 2014 .

[3]  A. Curtis,et al.  Ediacaran metazoan reefs from the Nama Group, Namibia , 2014, Science.

[4]  T. Lenton,et al.  Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era , 2014 .

[5]  F. Macdonald,et al.  Trace Fossils with Spreiten from the Late Ediacaran Nama Group, Namibia: Complex Feeding Patterns Five Million Years Before The Precambrian–Cambrian Boundary , 2014 .

[6]  A. Knoll,et al.  Oxygen and animals in Earth history , 2014, Proceedings of the National Academy of Sciences.

[7]  D. Canfield,et al.  Oxygen requirements of the earliest animals , 2014, Proceedings of the National Academy of Sciences.

[8]  D. Schrag,et al.  Searching for an oxygenation event in the fossiliferous Ediacaran of northwestern Canada , 2013 .

[9]  A. J. Kaufman,et al.  Stratigraphy, palaeontology and geochemistry of the late Neoproterozoic Aar Member, southwest Namibia: Reflecting environmental controls on Ediacara fossil preservation during the terminal Proterozoic in African Gondwana , 2013 .

[10]  A. Knoll,et al.  Oxygen, ecology, and the Cambrian radiation of animals , 2013, Proceedings of the National Academy of Sciences.

[11]  S. Poulton,et al.  Anoxia in the terrestrial environment during the late Mesoproterozoic , 2013 .

[12]  C. Riccomini,et al.  Origin and impact of the oldest metazoan bioclastic sediments , 2013 .

[13]  A. Knoll,et al.  A basin redox transect at the dawn of animal life , 2012 .

[14]  D. Canfield,et al.  Green rust formation controls nutrient availability in a ferruginous water column , 2012 .

[15]  A. Knoll,et al.  Late Ediacaran redox stability and metazoan evolution , 2012 .

[16]  A. Knoll,et al.  DEEP-WATER INCISED VALLEY DEPOSITS AT THE EDIACARAN-CAMBRIAN BOUNDARY IN SOUTHERN NAMIBIA CONTAIN ABUNDANT TREPTICHNUS PEDUM , 2012 .

[17]  D. Schrag,et al.  Uncovering the Neoproterozoic carbon cycle , 2012, Nature.

[18]  D. Erwin,et al.  The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals , 2011, Science.

[19]  A. Bekker,et al.  Widespread iron-rich conditions in the mid-Proterozoic ocean , 2011, Nature.

[20]  R. Wood Paleoecology of the earliest skeletal metazoan communities: Implications for early biomineralization , 2011 .

[21]  D. Canfield,et al.  Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History , 2011 .

[22]  D. Canfield,et al.  Towards a quantitative understanding of the late Neoproterozoic carbon cycle , 2011, Proceedings of the National Academy of Sciences.

[23]  A. J. Kaufman,et al.  Pervasive oxygenation along late Archaean ocean margins , 2010 .

[24]  L. Derry On the significance of d 13C correlations in ancient sediments , 2010 .

[25]  D. Canfield,et al.  Spatial variability in oceanic redox structure 1.8 billion years ago , 2010 .

[26]  A. Sessions,et al.  A Stratified Redox Model for the Ediacaran Ocean , 2010, Science.

[27]  A. Knoll,et al.  An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA , 2010 .

[28]  J. Grotzinger,et al.  Superheavy pyrite (δ34Spyr > δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: A consequence of low seawater sulfate at the dawn of animal life , 2009 .

[29]  N. Butterfield,et al.  Oxygen, animals and oceanic ventilation: an alternative view , 2009, Geobiology.

[30]  M. Kennedy,et al.  Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean , 2008 .

[31]  Carlos M. Duarte,et al.  Thresholds of hypoxia for marine biodiversity , 2008, Proceedings of the National Academy of Sciences.

[32]  A. Knoll,et al.  Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry , 2008, Science.

[33]  B. Beckmann,et al.  Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters , 2008 .

[34]  A. Anbar,et al.  Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans , 2008 .

[35]  A. Anbar,et al.  Tracing the stepwise oxygenation of the Proterozoic ocean , 2008, Nature.

[36]  A. J. Kaufman,et al.  Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation , 2008, Proceedings of the National Academy of Sciences.

[37]  R. Raiswell,et al.  Turbidite depositional influences on the diagenesis of Beecher's Trilobite Bed and the Hunsrück Slate; sites of soft tissue pyritization , 2008, American Journal of Science.

[38]  D. Canfield,et al.  Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life , 2007, Science.

[39]  N. Butterfield,et al.  MACROEVOLUTION AND MACROECOLOGY THROUGH DEEP TIME , 2007 .

[40]  J. Grotzinger,et al.  Oxidation of the Ediacaran Ocean , 2006, Nature.

[41]  Wei Wang,et al.  U-Pb Ages from the Neoproterozoic Doushantuo Formation, China , 2005, Science.

[42]  D. Canfield,et al.  Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates , 2005 .

[43]  M. Krom,et al.  A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide , 2004 .

[44]  D. Canfield,et al.  The transition to a sulphidic ocean ∼ 1.84 billion years ago , 2004, Nature.

[45]  J. Grotzinger,et al.  Digital Reconstruction and Stratigraphic Evolution of a Microbial-Dominated, Isolated Carbonate Platform (Terminal Proterozoic, Nama Group, Namibia) , 2004 .

[46]  T. Anderson,et al.  SOURCES AND MECHANISMS FOR THE ENRICHMENT OF HIGHLY REACTIVE IRON IN EUXINIC BLACK SEA SEDIMENTS , 2004 .

[47]  N. Christie‐Blick,et al.  Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): Paleogeographic implications , 2003 .

[48]  A. Knoll Vestiges of a beginning? Paleontological and geochemical constraints on early animal evolution , 2003 .

[49]  J. Hayes,et al.  Dynamics of the Neoproterozoic carbon cycle , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Grotzinger,et al.  Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman , 2003 .

[51]  R. Raiswell,et al.  The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition , 2002 .

[52]  J. Grotzinger,et al.  Proterozoic Modular Biomineralized Metazoan from the Nama Group, Namibia , 2002, Science.

[53]  A. Knoll,et al.  Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia , 2000, Paleobiology.

[54]  J. Kirschvink,et al.  Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. , 2000, Science.

[55]  C. Calver Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification , 2000 .

[56]  S. Jensen,et al.  Complex trace fossils from the terminal Proterozoic of Namibia , 2000 .

[57]  A. J. Kaufman,et al.  A composite reference section for terminal proterozoic strata of southern Namibia. , 1998, Journal of sedimentary research. Section A, Sedimentary petrology and processes : an international journal of SEPM.

[58]  D. Canfield,et al.  Sources of iron for pyrite formation in marine sediments , 1998 .

[59]  A. Knoll,et al.  Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.

[60]  J. Grotzinger,et al.  The youngest Ediacaran fossils from Southern Africa , 1997, Journal of Paleontology.

[61]  D. Canfield,et al.  A model for iron deposition to euxinic Black Sea sediments , 1996 .

[62]  J. Hayes,et al.  Terminal Proterozoic reorganization of biogeochemical cycles , 1995, Nature.

[63]  G. Germs The Neoproterozoic of southwestern Africa, with emphasis on platform stratigraphy and paleontology , 1995 .

[64]  J. Grotzinger,et al.  Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand Subgroups (Nama Group), southwestern Namibia , 1995 .

[65]  P. Gresse,et al.  The Nama foreland basin: sedimentation, major unconformity bounded sequences and multisided active margin advance , 1993 .

[66]  D. Canfield,et al.  The reactivity of sedimentary iron minerals toward sulfide , 1992 .

[67]  H. Strauss,et al.  Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment , 1992, Nature.

[68]  A. Knoll,et al.  Latest Proterozoic Microfossils from the Nama Group, Namibia (South West Africa) , 1986 .

[69]  D. Canfield,et al.  The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales , 1986 .

[70]  G. Germs New shelly fossils from Nama Group, South West Africa , 1972 .

[71]  D. Rhoads,et al.  EVOLUTIONARY AND ECOLOGIC SIGNIFICANCE OF OXYGEN‐DEFICIENT MARINE BASINS , 1971 .

[72]  P. Cloud Atmospheric and hydrospheric evolution on the primitive earth. Both secular accretion and biological and geochemical processes have affected earth's volatile envelope. , 1968, Science.

[73]  M. Schmitz Radiogenic Isotope Geochronology , 2012 .

[74]  J. Gehling,et al.  Life after snowball: The oldest complex Ediacaran fossils , 2003 .

[75]  O. Smith Terminal proterozoic carbonate platform development : stratigraphy and sedimentology of the Kuibis Subgroup (ca. 550-548 Ma), Northern Nama Basin, Namibia. , 1999 .

[76]  J. Grotzinger,et al.  Reconstruction of important Proterozoic-Cambrian boundary exposures through the recognition of thrust deformation in the Nama Group of southern Namibia , 1996 .

[77]  R. Rosenberg,et al.  Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna , 1995 .

[78]  S. Burns,et al.  Carbon isotopic record of the Latest Proterozoic from Oman , 1993 .

[79]  Grant Sw Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. , 1990 .

[80]  B. Runnegar Oxygen requirements, biology and phylogenetic significance of the late Precambrian worm Dickinsonia, and the evolution of the burrowing habit , 1982 .