Improving CUR matrix decomposition and the Nyström approximation via adaptive sampling

The CUR matrix decomposition and the Nystrom approximation are two important low-rank matrix approximation techniques. The Nystrom method approximates a symmetric positive semidefinite matrix in terms of a small number of its columns, while CUR approximates an arbitrary data matrix by a small number of its columns and rows. Thus, CUR decomposition can be regarded as an extension of the Nystrom approximation. In this paper we establish a more general error bound for the adaptive column/row sampling algorithm, based on which we propose more accurate CUR and Nystrom algorithms with expected relative-error bounds. The proposed CUR and Nystrom algorithms also have low time complexity and can avoid maintaining the whole data matrix in RAM. In addition, we give theoretical analysis for the lower error bounds of the standard Nystrom method and the ensemble Nystrom method. The main theoretical results established in this paper are novel, and our analysis makes no special assumption on the data matrices.

[1]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[2]  J. Meyer Generalized Inverses (Theory And Applications) (Adi Ben-Israel and Thomas N. E. Greville) , 1976 .

[3]  L. Foster Rank and null space calculations using matrix decomposition without column interchanges , 1986 .

[4]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[5]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[6]  Christian H. Bischof,et al.  Structure-Preserving and Rank-Revealing QR-Factorizations , 1991, SIAM J. Sci. Comput..

[7]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[8]  C. Pan,et al.  Rank-Revealing QR Factorizations and the Singular Value Decomposition , 1992 .

[9]  Ilse C. F. Ipsen,et al.  On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..

[10]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[11]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[12]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[13]  G. W. Stewart,et al.  Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix , 1999, Numerische Mathematik.

[14]  Christopher K. I. Williams,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[15]  Eugene E. Tyrtyshnikov,et al.  Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.

[16]  S. Schreiber,et al.  Vector algebra in the analysis of genome-wide expression data , 2002, Genome Biology.

[17]  Petros Drineas,et al.  Pass efficient algorithms for approximating large matrices , 2003, SODA '03.

[18]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Alan M. Frieze,et al.  Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.

[20]  Steve R. Gunn,et al.  Result Analysis of the NIPS 2003 Feature Selection Challenge , 2004, NIPS.

[21]  Petros Drineas,et al.  On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..

[22]  Michael W. Berry,et al.  Algorithm 844: Computing sparse reduced-rank approximations to sparse matrices , 2005, TOMS.

[23]  R. Róbert Generalized Inverses (Theory and Applications. Second edition) by A. Ben-Israel and T.N.E. Neville (deceased) , 2005 .

[24]  Santosh S. Vempala,et al.  Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.

[25]  Petros Drineas,et al.  Fast Monte Carlo Algorithms for Matrices III: Computing a Compressed Approximate Matrix Decomposition , 2006, SIAM J. Comput..

[26]  Petros Drineas,et al.  Tensor-CUR decompositions for tensor-based data , 2006, KDD '06.

[27]  Ameet Talwalkar,et al.  Large-scale manifold learning , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  S. Muthukrishnan,et al.  Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..

[29]  Ivor W. Tsang,et al.  Improved Nyström low-rank approximation and error analysis , 2008, ICML '08.

[30]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[31]  Ameet Talwalkar,et al.  Ensemble Nystrom Method , 2009, NIPS.

[32]  Mohamed-Ali Belabbas,et al.  Spectral methods in machine learning and new strategies for very large datasets , 2009, Proceedings of the National Academy of Sciences.

[33]  Paulo Cortez,et al.  Modeling wine preferences by data mining from physicochemical properties , 2009, Decis. Support Syst..

[34]  Luis Rademacher,et al.  Efficient Volume Sampling for Row/Column Subset Selection , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[35]  Ameet Talwalkar,et al.  Matrix Coherence and the Nystrom Method , 2010, UAI.

[36]  James T. Kwok,et al.  Clustered Nyström Method for Large Scale Manifold Learning and Dimension Reduction , 2010, IEEE Transactions on Neural Networks.

[37]  James T. Kwok,et al.  Making Large-Scale Nyström Approximation Possible , 2010, ICML.

[38]  Michael W. Mahoney,et al.  CUR from a Sparse Optimization Viewpoint , 2010, NIPS.

[39]  Christos Boutsidis,et al.  Near Optimal Column-Based Matrix Reconstruction , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[40]  Michael W. Mahoney Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..

[41]  Ameet Talwalkar,et al.  Divide-and-Conquer Matrix Factorization , 2011, NIPS.

[42]  Alex Gittens,et al.  The spectral norm error of the naive Nystrom extension , 2011, ArXiv.

[43]  Chris Mesterharm,et al.  Active learning using on-line algorithms , 2011, KDD.

[44]  Rong Jin,et al.  Improved Bound for the Nystrom's Method and its Application to Kernel Classification , 2011, ArXiv.

[45]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[46]  Ameet Talwalkar,et al.  Sampling Methods for the Nyström Method , 2012, J. Mach. Learn. Res..

[47]  Venkatesan Guruswami,et al.  Optimal column-based low-rank matrix reconstruction , 2011, SODA.

[48]  David P. Woodruff,et al.  Fast approximation of matrix coherence and statistical leverage , 2011, ICML.

[49]  Rong Jin,et al.  Improved Bounds for the Nyström Method With Application to Kernel Classification , 2011, IEEE Transactions on Information Theory.

[50]  Sjsu ScholarWorks,et al.  Rank revealing QR factorizations , 2014 .

[51]  Christos Boutsidis,et al.  Near-Optimal Column-Based Matrix Reconstruction , 2014, SIAM J. Comput..

[52]  Severnyi Kavkaz Pseudo-Skeleton Approximations by Matrices of Maximal Volume , 2022 .