Global existence and blow‐up of solutions for nonlinear viscoelastic wave equation with degenerate damping and source

In this paper we investigate the global existence and finite time blow‐up of solutions to the nonlinear viscoelastic equation \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$$ u_{tt}-\triangle u+\int _0^t g(t-s)\triangle u(s)\,\mathrm{d} s+|u|^k\partial j(u_t)=|u|^{p-1}u \quad {\rm in}\quad \Omega \times (0, T) $$\end{document} associated with initial and Dirichlet boundary conditions. Here ∂j denote the sub‐differential of j. Under suitable assumptions on g(·), j(·) and the parameters in the equation, we obtain the global existence of generalized solutions, weak solutions for the equation. The finite time blow‐up of weak solutions for the equation is also established provided the initial energy is negative and the exponent p is greater than the critical value k + m. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

[1]  I. Segal Non-Linear Semi-Groups , 1963 .

[2]  R. Glassey Blow-up theorems for nonlinear wave equations , 1973 .

[3]  Howard A. Levine,et al.  Instability and Nonexistence of Global Solutions to Nonlinear Wave Equations , 1974 .

[4]  D. Sattinger,et al.  Saddle points and instability of nonlinear hyperbolic equations , 1975 .

[5]  John M. Ball,et al.  REMARKS ON BLOW-UP AND NONEXISTENCE THEOREMS FOR NONLINEAR EVOLUTION EQUATIONS , 1977 .

[6]  D. Ang,et al.  Mixed problem for some semi-linear wave equation with a nonhomogeneous condition , 1988 .

[7]  M. Kopáčková Remarks on bounded solutions of a semilinear dissipative hyperbolic equation , 1989 .

[8]  Vladimir Georgiev,et al.  Existence of a Solution of the Wave Equation with Nonlinear Damping and Source Terms , 1994 .

[9]  Howard A. Levine,et al.  Global Nonexistence Theorems for Quasilinear Evolution Equations with Dissipation , 1997 .

[10]  Grozdena Todorova,et al.  Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms , 2000 .

[11]  Howard A. Levine,et al.  Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation , 1998 .

[12]  Grozdena Todorova Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms , 2000 .

[13]  Global solutions to boundary value problems for a nonlinear wave equation in high space dimensions , 2001 .

[14]  I. Lasiecka,et al.  Hadamard Well-posedness of Weak Solutions in Nonlinear Dynamic Elasticity-full von Karman Systems , 2002 .

[15]  M. Rammaha,et al.  Global existence and non-existence theorems for nonlinear wave equations , 2002 .

[16]  M. Rammaha,et al.  Global existence and nonexistence for nonlinear wave equations with damping and source terms , 2002 .

[17]  Salim A. Messaoudi,et al.  Blow up and global existence in a nonlinear viscoelastic wave equation , 2003 .

[18]  J. Serrin,et al.  Existence for a nonlinear wave equation with damping and source terms , 2003, Differential and Integral Equations.

[19]  Marcelo M. Cavalcanti,et al.  Existence and asymptotic stability for evolution problems on manifolds with damping and source terms , 2004 .

[20]  V. Barbu,et al.  On nonlinear wave equations with degenerate damping and source terms , 2005 .

[21]  Salim A. Messaoudi,et al.  Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation , 2006 .

[22]  Irena Lasiecka,et al.  Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping–source interaction , 2007 .

[23]  V. Barbu,et al.  BLOW-UP OF GENERALIZED SOLUTIONS TO WAVE EQUATIONS WITH NONLINEAR DEGENERATE DAMPING AND SOURCE TERMS , 2007 .

[24]  Patrick Martinez,et al.  General decay rate estimates for viscoelastic dissipative systems , 2008 .

[25]  I. Lasiecka,et al.  Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping , 2008 .

[26]  Salim A. Messaoudi,et al.  A blow-up result in a Cauchy viscoelastic problem , 2008, Appl. Math. Lett..