Fuzzy multilevel programming with a hybrid intelligent algorithm

In order to model fuzzy decentralized decision-making problem, fuzzy expected value multilevel programming and chance-constrained multilevel programming are introduced. Furthermore, fuzzy simulation, neural network, and genetic algorithm are integrated to produce a hybrid intelligent algorithm for finding the Stackelberg-Nash equilibrium. Finally, two numerical examples are provided to illustrate the effectiveness of the hybrid intelligent algorithm.

[1]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[2]  Ue-Pyng Wen,et al.  Linear Bi-level Programming Problems — A Review , 1991 .

[3]  Charles D. Kolstad,et al.  Empirical Properties of Economic Incentives and Command-and-Control Regulations for Air Pollution Control , 1986 .

[4]  Ichiro Nishizaki,et al.  Interactive fuzzy programming for multi-level 0-1 programming problems with fuzzy parameters through genetic algorithms , 2001, Fuzzy Sets Syst..

[5]  Gilles Savard,et al.  The steepest descent direction for the nonlinear bilevel programming problem , 1990, Oper. Res. Lett..

[6]  Mitsuo Gen,et al.  A Hybrid Intelligent Algorithm for Stochastic Multilevel Programming , 2004 .

[7]  Baoding Liu,et al.  Stackelberg-Nash equilibrium for multilevel programming with multiple followers using genetic algorithms , 1998 .

[8]  E. Stanley Lee,et al.  Fuzzy approach for multi-level programming problems , 1996, Comput. Oper. Res..

[9]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[10]  Michael Patriksson,et al.  Stochastic mathematical programs with equilibrium constraints , 1999, Oper. Res. Lett..

[11]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[12]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[13]  Wilfred Candler,et al.  A linear two-level programming problem, , 1982, Comput. Oper. Res..

[14]  Jerome Bracken,et al.  Mathematical Programs with Optimization Problems in the Constraints , 1973, Oper. Res..

[15]  Young-Jou Lai,et al.  Hierarchical optimization: A satisfactory solution , 1996, Fuzzy Sets Syst..

[16]  Charles E. Blair,et al.  Computational Difficulties of Bilevel Linear Programming , 1990, Oper. Res..

[17]  E. Stanley Lee,et al.  Fuzzy and Multi-Level Decision Making , 2001 .

[18]  B. McCarl,et al.  The Potential Role of Multilevel Programming in Agricultural Economics , 1981 .

[19]  Jerome Bracken,et al.  Technical Note - A Method for Solving Mathematical Programs with Nonlinear Programs in the Constraints , 1974, Oper. Res..

[20]  Jonathan F. Bard,et al.  A bilevel programming approach to determining tax credits for biofuel production , 2000, Eur. J. Oper. Res..

[21]  Wayne F. Bialas,et al.  Two-Level Linear Programming , 1984 .

[22]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[23]  E. Stanley Lee,et al.  Fuzzy multiple level programming , 2001, Appl. Math. Comput..

[24]  Baoding Liu,et al.  Chance constrained programming with fuzzy parameters , 1998, Fuzzy Sets Syst..

[25]  Robert G. Jeroslow,et al.  The polynomial hierarchy and a simple model for competitive analysis , 1985, Math. Program..

[26]  Baoding Liu Uncertainty Theory: An Introduction to its Axiomatic Foundations , 2004 .

[27]  Booding Liu,et al.  Minimax Chance Constrained Programming Models for Fuzzy Decision Systems , 1998, Inf. Sci..

[28]  Yian-Kui Liu,et al.  Expected value of fuzzy variable and fuzzy expected value models , 2002, IEEE Trans. Fuzzy Syst..

[29]  Mahyar A. Amouzegar,et al.  Determining optimal pollution control policies: An application of bilevel programming , 1999, Eur. J. Oper. Res..

[30]  Jonathan F. Bard,et al.  A Branch and Bound Algorithm for the Bilevel Programming Problem , 1990, SIAM J. Sci. Comput..

[31]  Ichiro Nishizaki,et al.  Interactive fuzzy programming for multi-level linear programming problems with fuzzy parameters , 2000, Fuzzy Sets Syst..