Lagrange Multiplier Approach with Optimized Finite Difference Stencils for Pricing American Options under Stochastic Volatility

The deterministic numerical valuation of American options under Heston's stochastic volatility model is considered. The prices are given by a linear complementarity problem with a two- dimensional parabolic partial differential operator. A new truncation of the domain is described for small asset values, while for large asset values and variance a standard truncation is used. The finite difference discretization is constructed by numerically solving a quadratic optimization problem aiming to minimize the truncation error at each grid point. A Lagrange approach is used to treat the linear complementarity problems. Numerical examples demonstrate the accuracy and effectiveness of the proposed approach.

[1]  S. Ikonen,et al.  Efficient numerical methods for pricing American options under stochastic volatility , 2008 .

[2]  Kazufumi Ito,et al.  Maximum Principle Preserving Schemes for Interface Problems with Discontinuous Coefficients , 2001, SIAM J. Sci. Comput..

[3]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[4]  RAUL KANGRO,et al.  Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..

[5]  M. Giles,et al.  Convergence analysis of Crank-Nicolson and Rannacher time-marching , 2006 .

[6]  Jari Toivanen,et al.  COMPONENTWISE SPLITTING METHODS FOR PRICING AMERICAN OPTIONS UNDER STOCHASTIC VOLATILITY , 2007 .

[7]  Jari Toivanen,et al.  Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..

[8]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[9]  Jari Toivanen,et al.  Operator Splitting Methods for Pricing American Options with Stochastic Volatility , 2004 .

[10]  Xiaojun Chen,et al.  Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..

[11]  Peter A. Forsyth,et al.  Convergence remedies for non-smooth payoffs in option pricing , 2003 .

[12]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[13]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[14]  Kevin Parrott,et al.  Multigrid for American option pricing with stochastic volatility , 1999 .

[15]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[16]  K. Manjunatha,et al.  Derivatives , 2006 .

[17]  A. Brandt,et al.  Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems , 1983 .

[18]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[19]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[20]  G. Papanicolaou,et al.  Derivatives in Financial Markets with Stochastic Volatility , 2000 .

[21]  Gabriel Wittum,et al.  On multigrid for anisotropic equations and variational inequalities “Pricing multi-dimensional European and American options” , 2004 .

[22]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[23]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[24]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[25]  Peter A. Forsyth,et al.  Penalty methods for American options with stochastic volatility , 1998 .

[26]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[27]  K. Kunisch,et al.  Parabolic variational inequalities : The Lagrange multiplier approach , 2006 .

[28]  Cornelis W. Oosterlee,et al.  On multigrid for linear complementarity problems with application to American-style options. , 2003 .

[29]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[30]  Peter A. Forsyth,et al.  Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..

[31]  Jonas Persson,et al.  Space-time adaptive finite difference method for European multi-asset options , 2007, Comput. Math. Appl..

[32]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[33]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[34]  G. Windisch M-matrices in numerical analysis , 1989 .

[35]  J. Pang,et al.  Option Pricing and Linear Complementarity , 1998 .

[36]  Jari Toivanen,et al.  Operator splitting methods for pricing American options under stochastic volatility , 2009, Numerische Mathematik.

[37]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[38]  Peter A. Forsyth,et al.  Negative coefficients in two-factor option pricing models , 2003 .

[39]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[40]  Kazufumi Ito,et al.  Lagrange multiplier approach to variational problems and applications , 2008, Advances in design and control.