Microstructure, mechanical properties, and corrosion of friction stir welded Al 5456

Friction stir welds in Al 5456 were analyzed to determine their microstructure, mechanical properties, and corrosion behavior as a function of position across the transverse cross-section of the weld. The microstructural evolution that occurred in each weld-affected region was correlated to the properties of those regions to determine the microstructural basis for the observed tensile, fatigue, and corrosion properties. In particular, the effects of weld-induced deformation recovery (both in terms of reduced dislocation density and its implications on solute content and precipitation), grain growth, and precipitate evolutions will be discussed.

[1]  T. Mcnelley,et al.  Development of structure and mechanical properties in Al-10.2 WT. PCT. Mg by thermomechanical processing , 1984 .

[2]  A. Cottrell,et al.  LXXXVI. A note on the Portevin-Le Chatelier effect , 1953 .

[3]  B. Skrotzki,et al.  Microstructural and Mechanical Characterization of a Friction Stir Welded Al-Alloy , 2000 .

[4]  Tsuneo Takahashi,et al.  Modulated structures and GP Zones in Al-Mg Alloys , 1982 .

[5]  R. Fonda,et al.  Development of grain structure during friction stir welding , 2004 .

[6]  W. M. Thomas,et al.  Friction stir process welds aluminium alloys : The process produces low-distortion, high-quality, low-cost welds on aluminium , 1996 .

[7]  K. K. Sankaran,et al.  Corrosion-fatigue crack growth in friction stir welded Al 7050 , 2001 .

[8]  G. Schoeck The portevin-le chatelier effect. A kinetic theory , 1984 .

[9]  A. Davenport,et al.  The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024–T351 , 2007 .

[10]  Murray W. Mahoney,et al.  Corrosion Behavior of Friction-Stir-Welded AA7050-T7651 , 2003 .

[11]  H. Jones,et al.  Fatigue crack propagation in ultrafine grained Al–Mg alloy , 2005 .

[12]  Ashok Saxena,et al.  Review and extension of compliance information for common crack growth specimens , 1978 .

[13]  G. Frankel,et al.  Localized Corrosion and Stress Corrosion Cracking Resistance of Friction Stir Welded Aluminum Alloy 5454 , 1999 .

[14]  M. Mahoney,et al.  Intergranular Corrosion Following Friction Stir Welding of Aluminum Alloy 7075-T651 , 1999 .

[15]  Murray W. Mahoney,et al.  Effects of friction stir welding on microstructure of 7075 aluminum , 1997 .

[16]  D. Hamana,et al.  Calorimetric study of pre-precipitation and precipitation in Al-Mg alloy , 1995 .

[17]  Rajiv S. Mishra,et al.  Microstructural investigation of friction stir welded 7050-T651 aluminium , 2003 .

[18]  L. Murr,et al.  Corrosion of friction-stir welded aluminum alloys 2024 and 2195 , 2000 .

[19]  Kumar V. Jata,et al.  Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451 , 2000 .

[20]  M. Starink,et al.  β′ and β precipitation in an Al–Mg alloy studied by DSC and TEM , 1998 .

[21]  Hiroyuki Kokawa,et al.  Microstructural evolution of 6063 aluminum during friction-stir welding , 1999 .

[22]  P. G McCormigk,et al.  A model for the Portevin-Le Chatelier effect in substitutional alloys , 1972 .

[23]  K. Osamura,et al.  Metastable phases in the early stage of precipitation in Al-Mg alloys , 1984 .