Curve skeletonization using minimum-cost path

Abstract Skeletonization produces a compact representation of an object that reduces its dimensionality by one. In three dimensions, skeletons include both surface and curve structures. However, depending upon the primary aim of an application, especially those involving elongated objects, often, mere curve structures are sufficient to represent essential geometric and topologic features in an object. A skeleton that includes only curve structures is referred to as a curve skeletonization. This chapter reviews various definitions of a curve skeleton and different computational approaches. Conventional curve skeletonization algorithms using the principle of Blum's grassfire transform, often, produce unwanted spurious branches caused by boundary irregularities, digital effects, and other artifacts. Besides reviewing definitions and algorithms of curve skeletonization, a comprehensive solution using a minimum-cost path approach is described, and various important and related issues, e.g., centeredness of minimum-cost paths, collision impact, skeletal branch significance, etc. are discussed. A practical and efficient algorithm for the minimum-cost path based curve skeletonization is presented, and several applications are discussed.

[1]  Rangasami L. Kashyap,et al.  Building Skeleton Models via 3-D Medial Surface/Axis Thinning Algorithms , 1994, CVGIP Graph. Model. Image Process..

[2]  Punam K. Saha,et al.  Digital Topology and Geometry in Medical Imaging: A Survey , 2015, IEEE Transactions on Medical Imaging.

[3]  Eric A. Hoffman,et al.  Percent emphysema, airflow obstruction, and impaired left ventricular filling. , 2010, The New England journal of medicine.

[4]  Tamal K. Dey,et al.  Defining and computing curve-skeletons with medial geodesic function , 2006, SGP '06.

[5]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[6]  Kensaku Mori,et al.  Automated anatomical labeling of the bronchial branch and its application to the virtual bronchoscopy system , 2000, IEEE Transactions on Medical Imaging.

[7]  Ching Y. Suen,et al.  Thinning Methodologies - A Comprehensive Survey , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Gabriella Sanniti di Baja,et al.  From 3D Discrete Surface Skeletons to Curve Skeletons , 2008, ICIAR.

[9]  Ghassan Hamarneh,et al.  The Groupwise Medial Axis Transform for Fuzzy Skeletonization and Pruning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Bidyut Baran Chaudhuri,et al.  3D Digital Topology under Binary Transformation with Applications , 1996, Comput. Vis. Image Underst..

[11]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[12]  Balasubramanian Raman,et al.  Computing hierarchical curve-skeletons of 3D objects , 2005, The Visual Computer.

[13]  Hugues Talbot,et al.  Filtering and segmentation of 3D angiographic data: Advances based on mathematical morphology , 2013, Medical Image Anal..

[14]  Kung-Sik Chan,et al.  A controlled statistical study to assess measurement variability as a function of test object position and configuration for automated surveillance in a multicenter longitudinal COPD study (SPIROMICS). , 2016, Medical physics.

[15]  Raúl San José Estépar,et al.  CT metrics of airway disease and emphysema in severe COPD. , 2009, Chest.

[16]  Milan Sonka,et al.  Segmentation and quantitative analysis of intrathoracic airway trees from computed tomography images. , 2005, Proceedings of the American Thoracic Society.

[17]  Deborah Silver,et al.  Curve-Skeleton Properties, Applications, and Algorithms , 2007, IEEE Transactions on Visualization and Computer Graphics.

[18]  Punam K. Saha,et al.  A survey on skeletonization algorithms and their applications , 2016, Pattern Recognit. Lett..

[19]  Mie Sato,et al.  Penalized-Distance Volumetric Skeleton Algorithm , 2001, IEEE Trans. Vis. Comput. Graph..

[20]  Masayuki Nakajima,et al.  TEASAR: tree-structure extraction algorithm for accurate and robust skeletons , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[21]  Isabelle Bloch,et al.  Fuzzy skeleton by influence zones - Application to interpolation between fuzzy sets , 2008, Fuzzy Sets Syst..

[22]  Leonidas J. Guibas,et al.  Robust extraction of 1D skeletons from grayscale 3D images , 2008, 2008 19th International Conference on Pattern Recognition.

[23]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[24]  Alexandru Telea,et al.  Computing Multiscale Curve and Surface Skeletons of Genus 0 Shapes Using a Global Importance Measure , 2008, IEEE Transactions on Visualization and Computer Graphics.

[25]  Marcel Breeuwer,et al.  Minimum Cost Path Algorithm for Coronary Artery Central Axis Tracking in CT Images , 2003, MICCAI.

[26]  Philippe Flajolet,et al.  The Average Height of Binary Trees and Other Simple Trees , 1982, J. Comput. Syst. Sci..

[27]  E. Hoffman,et al.  Quantitative Dual-Energy Computed Tomography Supports a Vascular Etiology of Smoking-induced Inflammatory Lung Disease. , 2016, American journal of respiratory and critical care medicine.

[28]  Bhabatosh Chanda,et al.  Topology preservation in 3D digital space , 1994, Pattern Recognit..

[29]  David W. Paglieroni A unified distance transform algorithm and architecture , 2005, Machine Vision and Applications.

[30]  Geoffrey McLennan,et al.  Three-dimensional path planning for virtual bronchoscopy , 2004, IEEE Transactions on Medical Imaging.

[31]  Punam K. Saha,et al.  A New Fuzzy Skeletonization Algorithm and Its Applications to Medical Imaging , 2013, ICIAP.

[32]  Stina Svensson,et al.  Curve skeletonization of surface-like objects in 3D images guided by voxel classification , 2002 .

[33]  Mie Sato,et al.  CEASAR: a smooth, accurate and robust centerline extraction algorithm , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[34]  Alexandru Telea,et al.  Skeleton-based Hierarchical Shape Segmentation , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[35]  Bidyut Baran Chaudhuri,et al.  A new shape preserving parallel thinning algorithm for 3D digital images , 1997, Pattern Recognit..

[36]  Eric A. Hoffman,et al.  A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths , 2016, Pattern Recognit. Lett..

[37]  Jules Bloomenthal,et al.  Medial-based vertex deformation , 2002, SCA '02.

[38]  Jen-Hui Chuang,et al.  Skeletonization of Three-Dimensional Object Using Generalized Potential Field , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Attila Kuba,et al.  A 3D 6-subiteration thinning algorithm for extracting medial lines , 1998, Pattern Recognit. Lett..

[40]  Gabriella Sanniti di Baja,et al.  Skeletonizing Volume Objects Part 2: From Surface to Curve Skeleton , 1998, SSPR/SPR.

[41]  Bidyut Baran Chaudhuri,et al.  Detection of 3-D Simple Points for Topology Preserving Transformations with Application to Thinning , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Aly A. Farag,et al.  Variational Curve Skeletons Using Gradient Vector Flow , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Shmuel Einav,et al.  Evaluation of center-line extraction algorithms in quantitative coronary angiography , 2001, IEEE Transactions on Medical Imaging.

[44]  Chris Pudney,et al.  Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images , 1998, Comput. Vis. Image Underst..

[45]  Anthony J. Yezzi,et al.  Vessels as 4-D Curves: Global Minimal 4-D Paths to Extract 3-D Tubular Surfaces and Centerlines , 2007, IEEE Transactions on Medical Imaging.

[46]  Max A. Viergever,et al.  Multiscale vessel tracking , 2004, IEEE Transactions on Medical Imaging.

[47]  S. Collins,et al.  Lumen centerline detection in complex coronary angiograms , 1994, IEEE Transactions on Biomedical Engineering.

[48]  Péter Kardos,et al.  Thinning combined with iteration-by-iteration smoothing for 3D binary images , 2011, Graph. Model..

[49]  Laurent D. Cohen,et al.  Fast extraction of minimal paths in 3D images and applications to virtual endoscopy , 2001, Medical Image Anal..

[50]  E. V. van Beek,et al.  Heterogeneity of pulmonary perfusion as a mechanistic image-based phenotype in emphysema susceptible smokers , 2010, Proceedings of the National Academy of Sciences.

[51]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[52]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[53]  Nicholas Ayache,et al.  Topological segmentation of discrete surfaces , 2005, International Journal of Computer Vision.

[54]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[55]  Laurent D. Cohen,et al.  Tubular Structure Segmentation Based on Minimal Path Method and Anisotropic Enhancement , 2011, International Journal of Computer Vision.

[56]  Alexandru Telea,et al.  A Robust Level-Set Algorithm for Centerline Extraction , 2003, VisSym.

[57]  Eric A. Hoffman,et al.  Automated Assessment of Pulmonary Arterial Morphology in Multi-row Detector CT Imaging Using Correspondence with Anatomic Airway Branches , 2014, ISVC.

[58]  Martin Styner,et al.  Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms , 2009, Medical Image Anal..

[59]  Kaleem Siddiqi,et al.  Flux driven automatic centerline extraction , 2005, Medical Image Anal..

[60]  Gabriella Sanniti di Baja Well-Shaped, Stable, and Reversible Skeletons from the (3, 4)-Distance Transform , 1994, J. Vis. Commun. Image Represent..

[61]  Gabriella Sanniti di Baja,et al.  Distance-Driven Skeletonization in Voxel Images , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Deborah Silver,et al.  Animating Volumetric Models , 2001, Graph. Model..

[63]  Gabriella Sanniti di Baja,et al.  Computing skeletons in three dimensions , 1999, Pattern Recognit..

[64]  Milan Sonka,et al.  Automated Nomenclature Labeling of the Bronchial Tree in 3D-CT Lung Images , 2002, MICCAI.

[65]  Gustaf E. Lindskog,et al.  Segmental Anatomy of the Lungs , 1955, The Yale Journal of Biology and Medicine.

[66]  Zhengrong Liang,et al.  Automatic centerline extraction for virtual colonoscopy , 2002, IEEE Transactions on Medical Imaging.

[67]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[68]  Isabelle Bloch,et al.  A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes , 2009, Medical Image Anal..

[69]  Stephen R. Aylward,et al.  Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction , 2002, IEEE Transactions on Medical Imaging.

[70]  Julien Jomier,et al.  Registration and Analysis of Vascular Images , 2003, International Journal of Computer Vision.

[71]  Alexandru Telea,et al.  An Unified Multiscale Framework for Planar, Surface, and Curve Skeletonization , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  Laurent D. Cohen Multiple Contour Finding and Perceptual Grouping using Minimal Paths , 2004, Journal of Mathematical Imaging and Vision.

[73]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[74]  Stina Svensson Centres of maximal balls extracted from a fuzzy distance transform , 2007, ISMM.

[75]  Laurent D. Cohen,et al.  Geodesic voting for the automatic extraction of tree structures. Methods and applications , 2013, Comput. Vis. Image Underst..

[76]  Sen Wang,et al.  Robust curve skeleton extraction for vascular structures , 2012, Graph. Model..

[77]  Punam K. Saha,et al.  Volumetric Topological Analysis: A Novel Approach for Trabecular Bone Classification on the Continuum Between Plates and Rods , 2010, IEEE Transactions on Medical Imaging.

[78]  Eric A. Hoffman,et al.  A New Approach of Arc Skeletonization for Tree-like Objects Using Minimum Cost Path , 2014, 2014 22nd International Conference on Pattern Recognition.

[79]  Laurent D. Cohen,et al.  Global Minimum for Active Contour Models: A Minimal Path Approach , 1997, International Journal of Computer Vision.

[80]  Cheng Chen,et al.  Filtering Non-Significant Quench Points Using Collision Impact in Grassfire Propagation , 2015, ICIAP.

[81]  Alejandro F. Frangi,et al.  3D MRA coronary axis determination using a minimum cost path approach , 2002, Magnetic resonance in medicine.

[82]  Milan Sonka,et al.  Quantitative analysis of pulmonary airway tree structures , 2006, Comput. Biol. Medicine.

[83]  Laurent D. Cohen,et al.  Geodesic Methods in Computer Vision and Graphics , 2010, Found. Trends Comput. Graph. Vis..

[84]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[85]  Luciano da Fontoura Costa,et al.  Shape Analysis and Classification: Theory and Practice , 2000 .

[86]  King-Sun Fu,et al.  A parallel thinning algorithm for 3-D pictures , 1981 .

[87]  D S Paik,et al.  Automated flight path planning for virtual endoscopy. , 1998, Medical physics.

[88]  Alfred M. Bruckstein,et al.  Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[89]  Punam K. Saha,et al.  Fuzzy Distance Transform: Theory, Algorithms, and Applications , 2002, Comput. Vis. Image Underst..

[90]  Attila Kuba,et al.  A Parallel 3D 12-Subiteration Thinning Algorithm , 1999, Graph. Model. Image Process..

[91]  L. Cohen Minimal Paths and Fast Marching Methods for Image Analysis , 2006, Handbook of Mathematical Models in Computer Vision.

[92]  Junfeng Guo,et al.  A semi-automatic framework of measuring pulmonary arterial metrics at anatomic airway locations using CT imaging , 2016, SPIE Medical Imaging.

[93]  Aly A. Farag,et al.  Robust centerline extraction framework using level sets , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[94]  Guido Gerig,et al.  Multiscale medial shape-based analysis of image objects , 2003, Proc. IEEE.

[95]  Gabriella Sanniti di Baja,et al.  From skeleton branches to object parts , 2014, Comput. Vis. Image Underst..

[96]  Azriel Rosenfeld,et al.  A fuzzy medial axis transformation based on fuzzy disks , 1991, Pattern Recognit. Lett..

[97]  Milan Sonka,et al.  Matching and anatomical labeling of human airway tree , 2005, IEEE Transactions on Medical Imaging.

[98]  Meilan K. Han,et al.  Pulmonary arterial enlargement and acute exacerbations of COPD. , 2012, The New England journal of medicine.

[99]  Marleen de Bruijne,et al.  A Hierarchical Scheme for Geodesic Anatomical Labeling of Airway Trees , 2012, MICCAI.