Bessel F-isocrystals for reductive groups
暂无分享,去创建一个
Xinwen Zhu | Daxin Xu | Xinwen Zhu | Daxin Xu
[1] T. Lam,et al. The mirror conjecture for minuscule flag varieties , 2017, Duke Mathematical Journal.
[2] Y. André. Représentations galoisiennes et opérateurs de Bessel $p$-adiques , 2002 .
[3] Daqing Wan,et al. Variation of p-adic Newton polygons for L-functions of exponential sums , 2004 .
[4] P. Berthelot,et al. Notes on Crystalline Cohomology. (MN-21) , 2015 .
[5] V. Drinfeld,et al. ON A THEOREM OF BRADEN , 2013, 1308.3786.
[6] V. Lafforgue. Estimées pour les valuations $p$-adiques des valeurs propres des opérateurs de Hecke , 2011 .
[7] Pierre Deligne,et al. Hodge Cycles, Motives, and Shimura Varieties , 1989 .
[8] Timo Richarz. A new approach to the geometric Satake equivalence , 2012, Documenta Mathematica.
[9] P. Berthelot. Géométrie rigide et cohomologie des variétés algébriques de caractéristique $p$ , 1982 .
[10] Tomoyuki Abe. Langlands program for $p$-adic coefficients and the petites camarades conjecture , 2011, 1111.2479.
[11] Atsushi Shiho. ON CRYSTALLINE FUNDAMENTAL GROUPS , 1997 .
[12] N. M. Katz. Exponential Sums and Differential Equations. (AM-124) , 1990 .
[13] Tomoyuki Abe,et al. On Beilinson’s equivalence for p-adic cohomology , 2013, 1309.4517.
[14] Kiran S. Kedlaya,et al. Semistable reduction for overconvergent F - isocrystals , 2005 .
[15] Richard Crew. Kloosterman sums and monodromy of a $p$-adic hypergeometric equation , 1994 .
[16] Tomoyuki Abe. Langlands correspondence for isocrystals and the existence of crystalline companions for curves , 2013, 1310.0528.
[17] Tomoyuki Abe. Explicit calculation of Frobenius isomorphisms and Poincare duality in the theory of arithmetic D-modules , 1970 .
[18] 隅広 秀康,et al. Equivariant Completion (代数幾何学の研究) , 1973 .
[19] Tsuzuki Nobuo. The local index and the Swan conductor , 1998, Compositio Mathematica.
[20] Yves André. Filtrations de type Hasse-Arf et monodromie p-adique , 2002 .
[21] P. Berthelot,et al. F-isocrystals and de Rham cohomology. I , 1983 .
[22] Hideyasu Sumihiro,et al. Equivariant completion II , 1975 .
[23] S. Sperber. p-Adic hypergeometric functions and their cohomology , 1977 .
[24] Shun Ohkubo. Logarithmic growth filtrations for ( φ , ∇ )-modules over the bounded Robba ring , 2018 .
[25] B. Gross,et al. Arithmetic invariants of discrete Langlands parameters , 2010 .
[26] B. Chiarellotto,et al. Logarithmic growth and Frobenius filtrations for solutions of p-adic differential equations , 2009, Journal of the Institute of Mathematics of Jussieu.
[27] Ruochuan Liu,et al. Rigidity and a Riemann–Hilbert correspondence for p-adic local systems , 2016, 1602.06282.
[28] Marius van der Put,et al. Rigid analytic geometry and its applications , 2003 .
[29] S. Riche,et al. Notes on the geometric Satake equivalence , 2017, 1703.07288.
[30] X. Zhu,et al. Local models of Shimura varieties and a conjecture of Kottwitz , 2011, 1110.5588.
[31] N. M. Katz. FROM CLAUSEN TO CARLITZ: LOW-DIMENSIONAL SPIN GROUPS AND IDENTITIES AMONG CHARACTER SUMS , 2009 .
[32] G. Christol,et al. Sur le th\'eor\`eme de l'indice des \'equations diff\'erentielles p-adiques. III , 2000 .
[33] A. Grothendieck,et al. Éléments de géométrie algébrique , 1960 .
[34] Xinwen Zhu. The Geometric Satake Correspondence for Ramified Groups , 2011, 1107.5762.
[35] Tsuyoshi Murata,et al. {m , 1934, ACML.
[36] Kiran S. Kedlaya,et al. Notes on isocrystals , 2016, Journal of Number Theory.
[37] L. Williams,et al. On Landau-Ginzburg models for quadrics and flat sections of Dubrovin connections , 2014, 1404.4844.
[38] N. Tsuzuki,et al. Overholonomicity of overconvergent F-isocrystals over smooth varieties , 2008, 0803.2105.
[39] Jean-Yves Étesse,et al. Fonctions L associées aux F-isocristaux surconvergents. I: Interprétation cohomologique , 1993 .
[40] F. Baldassarri,et al. On Dwork cohomology for singular hypersurfaces , 2003 .
[41] Daqing Wan,et al. Newton polygons of zeta functions and L functions , 1993 .
[42] A p-adic local monodromy theorem , 2001, math/0110124.
[43] D. Gaitsgory,et al. Geometric Eisenstein series , 1999 .
[44] Tomoyuki Abe. Explicit calculation of Frobenius isomorphisms and Poincar\'{e} duality in the theory of arithmetic $\mathscr{D}$-modules , 2011, 1105.5796.
[45] Kazuaki Miyatani. $p$-adic generalized hypergeometric equations from the viewpoint of arithmetic $\scr{D}$-modules}$ , 2016, American Journal of Mathematics.
[46] N. Tsuzuki. Minimal slope conjecture of F-isocrystals , 2019, Inventiones mathematicae.
[47] Tomoyuki Abe. AROUND THE NEARBY CYCLE FUNCTOR FOR ARITHMETIC $\mathscr{D}$ -MODULES , 2018, Nagoya Mathematical Journal.
[48] Steven Sperber,et al. Exponential sums and Newton polyhedra: Cohomology and estimates , 1989 .
[49] J. Heinloth,et al. Kloosterman sheaves for reductive groups , 2010, 1005.2765.
[50] P. Deligne. La conjecture de Weil. I , 1974 .
[51] Hyperbolic localization of intersection cohomology , 2002, math/0202251.
[52] B. Dwork. p-adic cycles , 1969 .
[53] K. Kedlaya. p-adic Differential Equations , 2010 .
[54] L. Carlitz. A note on exponential sums , 1969 .
[55] B. Dwork. Bessel functions as $p$-adic functions of the argument , 1974 .
[56] T. Haines,et al. The Jordan-Hölder series for nearby cycles on some Shimura varieties and affine flag varieties , 2004, math/0402143.
[57] P. Berthelot. Introduction à la théorie arithmétique des d-modules , 2002 .
[58] B. Ngô,et al. Résolutions de Demazure affines et formule de Casselman-Shalika géométrique , 2000 .
[59] A. Beilinson. How to glue perverse sheaves , 1987 .
[60] B. Gross,et al. A rigid irregular connection on the projective line , 2009, 0901.2163.
[61] Gerd Faltings,et al. Algebraic loop groups and moduli spaces of bundles , 2003 .
[62] Y. Andre,et al. De Rham Cohomology of Differential Modules on Algebraic Varieties , 2001, Progress in Mathematics.
[63] P. Berthelot. ${\mathcal {D}}$-modules arithmétiques. I. Opérateurs différentiels de niveau fini , 1996 .
[64] Tomoyuki Abe,et al. Theory of weights in p-adic cohomology , 2013, 1303.0662.
[65] Marco d’Addezio. The monodromy groups of lisse sheaves and overconvergent F-isocrystals , 2017, Selecta Mathematica.
[66] F. Baldassarri. Differential modules and singular points of ϱ-adic differential equations , 1982 .
[67] Daniel Caro. $\mathcal {D}$-modules arithmétiques surholonomes , 2009 .
[68] N. M. Katz. On the calculation of some differential galois groups , 1987 .
[69] Xinwen Zhu. An introduction to affine Grassmannians and the geometric Satake equivalence , 2016, 1603.05593.
[70] Nicholas M. Katz,et al. Gauss Sums, Kloosterman Sums, and Monodromy Groups. (AM-116) , 1988 .
[71] I. Mirkovic,et al. Geometric Langlands duality and representations of algebraic groups over commutative rings , 2004, math/0401222.
[72] Richard Crew. F-isocrystals and their monodromy groups , 1992 .
[73] V. Drinfeld,et al. Slopes of indecomposable F-isocrystals , 2016, 1604.00660.
[74] J. S. Milne,et al. Tannakian Categories , 2012 .
[75] Xinwen Zhu. Frenkel–Gross’ irregular connection and Heinloth–Ngô–Yun’s are the same , 2012, 1603.05796.
[76] Xinwen Zhu. Affine Demazure modules and T-fixed point subschemes in the affine Grassmannian , 2007, 0710.5247.
[77] P. Deligne,et al. Applications de la formule des traces aux sommes trigonométrigues , 1977 .
[78] Z. Mebkhout. Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique , 2002 .
[79] Richard Crew. Specialization of crystalline cohomology , 1986 .
[80] N. M. Katz. Exponential sums and di?erential equations , 1990 .