Bessel F-isocrystals for reductive groups

We construct the Frobenius structure on a rigid connection $\mathrm{Be}_{\check{G}}$ on $\mathbb{G}_m$ for a split reductive group $\check{G}$ introduced by Frenkel-Gross. These data form a $\check{G}$-valued overconvergent $F$-isocrystal $\mathrm{Be}_{\check{G}}^{\dagger}$ on $\mathbb{G}_{m,\mathbb{F}_p}$, which is the $p$-adic companion of the Kloosterman $\check{G}$-local system $\mathrm{Kl}_{\check{G}}$ constructed by Heinloth-Ngo-Yun. By exploring the structure of the underlying differential equation, we calculate the monodromy group of $\mathrm{Be}_{\check{G}}^{\dagger}$ when $\check{G}$ is almost simple (which recovers the calculation of monodromy group of $\mathrm{Kl}_{\check{G}}$ due to Katz and Heinloth-Ngo-Yun), and establish functoriality between different Kloosterman $\check{G}$-local systems as conjectured by Heinloth-Ngo-Yun. We show that the Frobenius Newton polygons of $\mathrm{Kl}_{\check{G}}$ are generically ordinary for every $\check{G}$ and are everywhere ordinary on $|\mathbb{G}_{m,\mathbb{F}_p}|$ when $\check{G}$ is classical or $G_2$.

[1]  T. Lam,et al.  The mirror conjecture for minuscule flag varieties , 2017, Duke Mathematical Journal.

[2]  Y. André Représentations galoisiennes et opérateurs de Bessel $p$-adiques , 2002 .

[3]  Daqing Wan,et al.  Variation of p-adic Newton polygons for L-functions of exponential sums , 2004 .

[4]  P. Berthelot,et al.  Notes on Crystalline Cohomology. (MN-21) , 2015 .

[5]  V. Drinfeld,et al.  ON A THEOREM OF BRADEN , 2013, 1308.3786.

[6]  V. Lafforgue Estimées pour les valuations $p$-adiques des valeurs propres des opérateurs de Hecke , 2011 .

[7]  Pierre Deligne,et al.  Hodge Cycles, Motives, and Shimura Varieties , 1989 .

[8]  Timo Richarz A new approach to the geometric Satake equivalence , 2012, Documenta Mathematica.

[9]  P. Berthelot Géométrie rigide et cohomologie des variétés algébriques de caractéristique $p$ , 1982 .

[10]  Tomoyuki Abe Langlands program for $p$-adic coefficients and the petites camarades conjecture , 2011, 1111.2479.

[11]  Atsushi Shiho ON CRYSTALLINE FUNDAMENTAL GROUPS , 1997 .

[12]  N. M. Katz Exponential Sums and Differential Equations. (AM-124) , 1990 .

[13]  Tomoyuki Abe,et al.  On Beilinson’s equivalence for p-adic cohomology , 2013, 1309.4517.

[14]  Kiran S. Kedlaya,et al.  Semistable reduction for overconvergent F - isocrystals , 2005 .

[15]  Richard Crew Kloosterman sums and monodromy of a $p$-adic hypergeometric equation , 1994 .

[16]  Tomoyuki Abe Langlands correspondence for isocrystals and the existence of crystalline companions for curves , 2013, 1310.0528.

[17]  Tomoyuki Abe Explicit calculation of Frobenius isomorphisms and Poincare duality in the theory of arithmetic D-modules , 1970 .

[18]  隅広 秀康,et al.  Equivariant Completion (代数幾何学の研究) , 1973 .

[19]  Tsuzuki Nobuo The local index and the Swan conductor , 1998, Compositio Mathematica.

[20]  Yves André Filtrations de type Hasse-Arf et monodromie p-adique , 2002 .

[21]  P. Berthelot,et al.  F-isocrystals and de Rham cohomology. I , 1983 .

[22]  Hideyasu Sumihiro,et al.  Equivariant completion II , 1975 .

[23]  S. Sperber p-Adic hypergeometric functions and their cohomology , 1977 .

[24]  Shun Ohkubo Logarithmic growth filtrations for ( φ , ∇ )-modules over the bounded Robba ring , 2018 .

[25]  B. Gross,et al.  Arithmetic invariants of discrete Langlands parameters , 2010 .

[26]  B. Chiarellotto,et al.  Logarithmic growth and Frobenius filtrations for solutions of p-adic differential equations , 2009, Journal of the Institute of Mathematics of Jussieu.

[27]  Ruochuan Liu,et al.  Rigidity and a Riemann–Hilbert correspondence for p-adic local systems , 2016, 1602.06282.

[28]  Marius van der Put,et al.  Rigid analytic geometry and its applications , 2003 .

[29]  S. Riche,et al.  Notes on the geometric Satake equivalence , 2017, 1703.07288.

[30]  X. Zhu,et al.  Local models of Shimura varieties and a conjecture of Kottwitz , 2011, 1110.5588.

[31]  N. M. Katz FROM CLAUSEN TO CARLITZ: LOW-DIMENSIONAL SPIN GROUPS AND IDENTITIES AMONG CHARACTER SUMS , 2009 .

[32]  G. Christol,et al.  Sur le th\'eor\`eme de l'indice des \'equations diff\'erentielles p-adiques. III , 2000 .

[33]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[34]  Xinwen Zhu The Geometric Satake Correspondence for Ramified Groups , 2011, 1107.5762.

[35]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[36]  Kiran S. Kedlaya,et al.  Notes on isocrystals , 2016, Journal of Number Theory.

[37]  L. Williams,et al.  On Landau-Ginzburg models for quadrics and flat sections of Dubrovin connections , 2014, 1404.4844.

[38]  N. Tsuzuki,et al.  Overholonomicity of overconvergent F-isocrystals over smooth varieties , 2008, 0803.2105.

[39]  Jean-Yves Étesse,et al.  Fonctions L associées aux F-isocristaux surconvergents. I: Interprétation cohomologique , 1993 .

[40]  F. Baldassarri,et al.  On Dwork cohomology for singular hypersurfaces , 2003 .

[41]  Daqing Wan,et al.  Newton polygons of zeta functions and L functions , 1993 .

[42]  A p-adic local monodromy theorem , 2001, math/0110124.

[43]  D. Gaitsgory,et al.  Geometric Eisenstein series , 1999 .

[44]  Tomoyuki Abe Explicit calculation of Frobenius isomorphisms and Poincar\'{e} duality in the theory of arithmetic $\mathscr{D}$-modules , 2011, 1105.5796.

[45]  Kazuaki Miyatani $p$-adic generalized hypergeometric equations from the viewpoint of arithmetic $\scr{D}$-modules}$ , 2016, American Journal of Mathematics.

[46]  N. Tsuzuki Minimal slope conjecture of F-isocrystals , 2019, Inventiones mathematicae.

[47]  Tomoyuki Abe AROUND THE NEARBY CYCLE FUNCTOR FOR ARITHMETIC $\mathscr{D}$ -MODULES , 2018, Nagoya Mathematical Journal.

[48]  Steven Sperber,et al.  Exponential sums and Newton polyhedra: Cohomology and estimates , 1989 .

[49]  J. Heinloth,et al.  Kloosterman sheaves for reductive groups , 2010, 1005.2765.

[50]  P. Deligne La conjecture de Weil. I , 1974 .

[51]  Hyperbolic localization of intersection cohomology , 2002, math/0202251.

[52]  B. Dwork p-adic cycles , 1969 .

[53]  K. Kedlaya p-adic Differential Equations , 2010 .

[54]  L. Carlitz A note on exponential sums , 1969 .

[55]  B. Dwork Bessel functions as $p$-adic functions of the argument , 1974 .

[56]  T. Haines,et al.  The Jordan-Hölder series for nearby cycles on some Shimura varieties and affine flag varieties , 2004, math/0402143.

[57]  P. Berthelot Introduction à la théorie arithmétique des d-modules , 2002 .

[58]  B. Ngô,et al.  Résolutions de Demazure affines et formule de Casselman-Shalika géométrique , 2000 .

[59]  A. Beilinson How to glue perverse sheaves , 1987 .

[60]  B. Gross,et al.  A rigid irregular connection on the projective line , 2009, 0901.2163.

[61]  Gerd Faltings,et al.  Algebraic loop groups and moduli spaces of bundles , 2003 .

[62]  Y. Andre,et al.  De Rham Cohomology of Differential Modules on Algebraic Varieties , 2001, Progress in Mathematics.

[63]  P. Berthelot ${\mathcal {D}}$-modules arithmétiques. I. Opérateurs différentiels de niveau fini , 1996 .

[64]  Tomoyuki Abe,et al.  Theory of weights in p-adic cohomology , 2013, 1303.0662.

[65]  Marco d’Addezio The monodromy groups of lisse sheaves and overconvergent F-isocrystals , 2017, Selecta Mathematica.

[66]  F. Baldassarri Differential modules and singular points of ϱ-adic differential equations , 1982 .

[67]  Daniel Caro $\mathcal {D}$-modules arithmétiques surholonomes , 2009 .

[68]  N. M. Katz On the calculation of some differential galois groups , 1987 .

[69]  Xinwen Zhu An introduction to affine Grassmannians and the geometric Satake equivalence , 2016, 1603.05593.

[70]  Nicholas M. Katz,et al.  Gauss Sums, Kloosterman Sums, and Monodromy Groups. (AM-116) , 1988 .

[71]  I. Mirkovic,et al.  Geometric Langlands duality and representations of algebraic groups over commutative rings , 2004, math/0401222.

[72]  Richard Crew F-isocrystals and their monodromy groups , 1992 .

[73]  V. Drinfeld,et al.  Slopes of indecomposable F-isocrystals , 2016, 1604.00660.

[74]  J. S. Milne,et al.  Tannakian Categories , 2012 .

[75]  Xinwen Zhu Frenkel–Gross’ irregular connection and Heinloth–Ngô–Yun’s are the same , 2012, 1603.05796.

[76]  Xinwen Zhu Affine Demazure modules and T-fixed point subschemes in the affine Grassmannian , 2007, 0710.5247.

[77]  P. Deligne,et al.  Applications de la formule des traces aux sommes trigonométrigues , 1977 .

[78]  Z. Mebkhout Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique , 2002 .

[79]  Richard Crew Specialization of crystalline cohomology , 1986 .

[80]  N. M. Katz Exponential sums and di?erential equations , 1990 .