Transient optical studies of interfacial energetic disorder at nanostructured dye-sensitised inorganic/organic semiconductor heterojunctions.

[1]  D. Klug,et al.  Transient luminescence studies of electron injection in dye sensitised nanocrystalline TiO2 films , 2001 .

[2]  Martin A. Green,et al.  Clean electricity from photovoltaics , 2001 .

[3]  D. Klug,et al.  Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes , 2001 .

[4]  J. Hummelen,et al.  Time-resolved infrared-absorption study of photoinduced charge transfer in a polythiophene-methanofullerene composite film , 2000 .

[5]  Udo Bach,et al.  Modification of TiO2 heterojunctions with benzoic acid derivatives in hybrid molecular solid-state devices , 2000 .

[6]  S. Pelet,et al.  Cooperative Effect of Adsorbed Cations and Iodide on the Interception of Back Electron Transfer in the Dye Sensitization of Nanocrystalline TiO2 , 2000 .

[7]  D. Klug,et al.  Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: A comparison of ruthenium bipyridyl and porphyrin sensitizer dyes , 2000 .

[8]  David R. Klug,et al.  Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films , 2000 .

[9]  H. Bässler,et al.  Electrode versus space-charge-limited conduction in organic light-emitting diodes , 1999 .

[10]  U. Bach,et al.  Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells , 1999 .

[11]  Jenny Nelson,et al.  Continuous-time random-walk model of electron transport in nanocrystalline TiO 2 electrodes , 1999 .

[12]  Vladimir Arkhipov,et al.  Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation , 1999 .

[13]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[14]  Vladimir Arkhipov,et al.  Charge injection into light-emitting diodes: Theory and experiment , 1998 .

[15]  Yamamoto Toshihide,et al.  Palladium-catalyzed synthesis of triarylamines from aryl halides and diarylamines , 1998 .

[16]  A. Zaban,et al.  Relative Energetics at the Semiconductor/Sensitizing Dye/Electrolyte Interface , 1998 .

[17]  J. Hupp,et al.  Energetics of Electron Transfer at the Nanocrystalline Titanium Dioxide Semiconductor/Aqueous Solution Interface: pH Invariance of the Metal Based Formal Potential of a Representative Surface Attached Dye Couple. , 1997 .

[18]  Martin A. Abkowitz,et al.  Emission limited injection by thermally assisted tunneling into a trap‐free transport polymer , 1995 .

[19]  E. Peterman,et al.  Temperature-dependent triplet and fluorescence quantum yields of the photosystem II reaction center described in a thermodynamic model. , 1994, Biophysical journal.

[20]  M. Michel-beyerle,et al.  Inhomogeneity of Radical Pair Energies in Photosynthetic Reaction Centers Revealed by Differences in Recombination Dynamics of P+HA- When Detected in Delayed Emission and in Absorption , 1994 .

[21]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[22]  Donald Fitzmaurice,et al.  Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents , 1993 .

[23]  Donald Fitzmaurice,et al.  Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films , 1992 .

[24]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.