An improved kernelization algorithm for r-Set Packing

We present a reduction procedure that takes an arbitrary instance of the r-Set Packing problem and produces an equivalent instance whose number of elements is in O(k^r^-^1), where k is the input parameter. Such parameterized reductions are known as kernelization algorithms, and a reduced instance is called a problem kernel. Our result improves on previously known kernelizations by a factor of k. In particular, the number of elements in a 3-Set Packing kernel is improved from a cubic function of the parameter to a quadratic one.

[1]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[2]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[3]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[4]  Yunlong Liu,et al.  Parameterized Algorithms for Weighted Matching and Packing Problems , 2007, TAMC.

[5]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Michael R. Fellows,et al.  Crown Structures for Vertex Cover Kernelization , 2007, Theory of Computing Systems.

[8]  Weijia Jia,et al.  An efficient parameterized algorithm for m-set packing , 2004, J. Algorithms.

[9]  Ioannis Koutis,et al.  Faster Algebraic Algorithms for Path and Packing Problems , 2008, ICALP.

[10]  M. Teresa Melo,et al.  A Set Packing Approach for Scheduling Elective Surgical Procedures , 2005, OR.

[11]  Dimitrios M. Thilikos,et al.  Faster Fixed-Parameter Tractable Algorithms for Matching and Packing Problems , 2004, ESA.

[12]  Michael R. Fellows,et al.  On Problems without Polynomial Kernels (Extended Abstract) , 2008, ICALP.

[13]  Faisal N. Abu-Khzam Kernelization Algorithms for d-Hitting Set Problems , 2007, WADS.

[14]  Ioannis Koutis A faster parameterized algorithm for set packing , 2005, Inf. Process. Lett..

[15]  Michael R. Fellows,et al.  Linear Kernels in Linear Time, or How to Save k Colors in O(n2) Steps , 2004, WG.