Near-exhaustive precomputation of secondary cloth effects

The central argument against data-driven methods in computer graphics rests on the curse of dimensionality: it is intractable to precompute "everything" about a complex space. In this paper, we challenge that assumption by using several thousand CPU-hours to perform a massive exploration of the space of secondary clothing effects on a character animated through a large motion graph. Our system continually explores the phase space of cloth dynamics, incrementally constructing a secondary cloth motion graph that captures the dynamics of the system. We find that it is possible to sample the dynamical space to a low visual error tolerance and that secondary motion graphs containing tens of gigabytes of raw mesh data can be compressed down to only tens of megabytes. These results allow us to capture the effect of high-resolution, off-line cloth simulation for a rich space of character motion and deliver it efficiently as part of an interactive application.

[1]  Doug L. James,et al.  Backward steps in rigid body simulation , 2008, ACM Trans. Graph..

[2]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[3]  Alla Sheffer,et al.  Animation wrinkling: augmenting coarse cloth simulations with realistic-looking wrinkles , 2010, ACM Trans. Graph..

[4]  James F. O'Brien,et al.  Example-based wrinkle synthesis for clothing animation , 2010, ACM Trans. Graph..

[5]  Peter Norvig,et al.  The Unreasonable Effectiveness of Data , 2009, IEEE Intelligent Systems.

[6]  Huamin Wang,et al.  Data-driven elastic models for cloth: modeling and measurement , 2011, ACM Trans. Graph..

[7]  Byung-Uck Kim,et al.  A deformation transformer for real-time cloth animation , 2010, ACM Trans. Graph..

[8]  Jernej Barbic,et al.  Real-time control of physically based simulations using gentle forces , 2008, ACM Trans. Graph..

[9]  Doug L. James,et al.  Efficient yarn-based cloth with adaptive contact linearization , 2010, ACM Trans. Graph..

[10]  Doug L. James,et al.  Precomputing interactive dynamic deformable scenes , 2003, ACM Trans. Graph..

[11]  Jernej Barbič,et al.  Real-time control of physically based simulations using gentle forces , 2008, SIGGRAPH 2008.

[12]  Anna Hilsmann,et al.  Image-based Animation of Clothes , 2012, Eurographics.

[13]  Okan Arikan,et al.  Interactive motion generation from examples , 2002, ACM Trans. Graph..

[14]  FatahalianKayvon,et al.  Near-exhaustive precomputation of secondary cloth effects , 2013 .

[15]  Doug L. James,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH 2008.

[16]  Doug L. James,et al.  Many-worlds browsing for control of multibody dynamics , 2007, SIGGRAPH 2007.

[17]  Adrien Treuille,et al.  To appear in the ACM SIGGRAPH conference proceedings Modular Bases for Fluid Dynamics , 2022 .

[18]  Huamin Wang,et al.  Example-based wrinkle synthesis for clothing animation , 2010, SIGGRAPH 2010.

[19]  Peter-Pike J. Sloan,et al.  Physics-inspired upsampling for cloth simulation in games , 2011, ACM Trans. Graph..

[20]  Theodore Kim,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH Asia '08.

[21]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[22]  Tido Röder,et al.  Documentation Mocap Database HDM05 , 2007 .

[23]  Matthias Müller,et al.  Wrinkle meshes , 2010, SCA '10.

[24]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[25]  Nadia Magnenat-Thalmann,et al.  Advanced Topics in Virtual Garment Simulation , 2007, Eurographics.

[26]  Steve Marschner,et al.  Efficient yarn-based cloth with adaptive contact linearization , 2010, SIGGRAPH 2010.

[27]  Jessica K. Hodgins,et al.  Multi-linear data-driven dynamic hair model with efficient hair-body collision handling , 2012, SCA '12.

[28]  Edilson de Aguiar,et al.  Stable spaces for real-time clothing , 2010, ACM Trans. Graph..

[29]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH '08.

[30]  Adrien Treuille,et al.  Modular bases for fluid dynamics , 2009, SIGGRAPH 2009.

[31]  Z. Popovic,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH 2006.

[32]  Doug L. James,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, SIGGRAPH 2005.

[33]  Doug L. James,et al.  Backward steps in rigid body simulation , 2008, SIGGRAPH 2008.

[34]  Steve Marschner,et al.  Data‐Driven Estimation of Cloth Simulation Models , 2012, Comput. Graph. Forum.

[35]  Alla Sheffer,et al.  Animation wrinkling: augmenting coarse cloth simulations with realistic-looking wrinkles , 2010, SIGGRAPH 2010.

[36]  James F. O'Brien,et al.  Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..

[37]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[38]  Adam W. Bargteil,et al.  Physics-inspired upsampling for cloth simulation in games , 2011, SIGGRAPH 2011.

[39]  Huamin Wang,et al.  Data-driven elastic models for cloth: modeling and measurement , 2011, SIGGRAPH 2011.

[40]  Andrew Lewis,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH '06.

[41]  Kwang-Jin Choi,et al.  Stable but responsive cloth , 2002, SIGGRAPH 2002.

[42]  Dinesh K. Pai,et al.  DyRT: dynamic response textures for real time deformation simulation with graphics hardware , 2002, SIGGRAPH.

[43]  Byung-Uck Kim,et al.  A deformation transformer for real-time cloth animation , 2010, ACM Trans. Graph..

[44]  Derek Bradley,et al.  Wrinkling Captured Garments Using Space‐Time Data‐Driven Deformation , 2009, Comput. Graph. Forum.

[45]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[46]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.