Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death

THE t(14; 18) chromosomal translocation of human follicular B-cell lymphoma juxtaposes the bcl-2 gene with the immunoglobulin heavy chain locus1–3. The bcl-2 immunoglobulin fusion gene is markedly deregulated resulting in inappropriately elevated levels of bcl-2 RNA and protein4–7. Transgenic mice bearing a bcl-2 immunoglobulin minigene demonstrate a polyclonal expansion of resting yet responsive IgM–IgD B cells which display prolonged cell survival but no increase in cell cycling8,9. Moreover, deregulated bcl-2 extends the survival of certain haematopoietic cell lines following growth-factor deprivation10,11. By using immunolocalization studies we now demonstrate that Bcl-2 is an integral inner mitochondrial membrane protein of relative molecular mass 25,000 (25k). Overexpression of Bcl-2 blocks the apoptotic death of a pro-B-lymphocyte cell line. Thus, Bcl-2 is unique among proto-oncogenes, being localized to mitochondria and interfering with programmed cell death independent of promoting cell division.

[1]  S. Korsmeyer,et al.  Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. , 1990, Journal of immunology.

[2]  S. Korsmeyer,et al.  Deregulated Bcl-2-immunoglobulin transgene expands a resting but responsive immunoglobulin M and D-expressing B-cell population , 1990, Molecular and cellular biology.

[3]  S. Korsmeyer,et al.  The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein , 1989, Molecular and cellular biology.

[4]  S. Korsmeyer,et al.  Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around Jh on chromosome 14 and near a transcriptional unit on 18 , 1985, Cell.

[5]  M. Cleary,et al.  The bcl-2 candidate proto-oncogene product is a 24-kilodalton integral-membrane protein highly expressed in lymphoid cell lines and lymphomas carrying the t(14;18) translocation , 1989, Molecular and cellular biology.

[6]  Y. Tsujimoto,et al.  Characterization of the protein product of bcl-2, the gene involved in human follicular lymphoma. , 1987, Oncogene.

[7]  S. Korsmeyer,et al.  Alternative promoters and exons, somatic mutation and deregulation of the Bcl‐2‐Ig fusion gene in lymphoma. , 1988, The EMBO journal.

[8]  J. Sklar,et al.  Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation , 1986, Cell.

[9]  E. Unanue,et al.  Expression of membrane interleukin 1 by fibroblasts transfected with murine pro-interleukin 1 alpha cDNA. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[10]  S. Haldar,et al.  The bcl-2 gene encodes a novel G protein , 1989, Nature.

[11]  J. Sklar,et al.  Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Schreiber,et al.  Monoclonal antibodies to murine gamma-interferon which differentially modulate macrophage activation and antiviral activity. , 1985, Journal of immunology.

[13]  B. Robinson,et al.  The French and North American phenotypes of pyruvate carboxylase deficiency, correlation with biotin containing protein by 3H-biotin incorporation, 35S-streptavidin labeling, and Northern blotting with a cloned cDNA probe. , 1987, American journal of human genetics.

[14]  C. S. Devine,et al.  The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. , 1988, Gene.

[15]  T. Dexter,et al.  Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis , 1990, Nature.

[16]  S. Korsmeyer,et al.  bcl-2-Immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation , 1989, Cell.

[17]  A. Wyllie,et al.  Chromatin cleavage in apoptosis: Association with condensed chromatin morphology and dependence on macromolecular synthesis , 1984, The Journal of pathology.

[18]  R. Pennington Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. , 1961, The Biochemical journal.

[19]  Y. Tsujimoto,et al.  Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[20]  David L. Vaux,et al.  Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells , 1988, Nature.

[21]  S. Kornfeld,et al.  Partial purification and characterization of the glucosidases involved in the processing of asparagine-linked oligosaccharides. , 1980, Archives of biochemistry and biophysics.

[22]  M. S. Murthy,et al.  Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. Nowell,et al.  Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. , 1984, Science.

[24]  M. Cleary,et al.  Small G proteins are expressed ubiquitously in lymphoid cells and do not correspond to Bcl-2 , 1990, Nature.

[25]  C. Schnaitman,et al.  The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria. , 1967 .

[26]  S. Kornfeld,et al.  Isolation and characterization of membranes from bovine liver which are highly enriched in mannose 6-phosphate receptors , 1989, The Journal of cell biology.

[27]  S. Korsmeyer,et al.  Expression of Bcl-2 and Bcl-2-Ig fusion transcripts in normal and neoplastic cells. , 1987, The Journal of clinical investigation.

[28]  S. Korsmeyer,et al.  Refinement of lymphoma cytogenetics by the chromosome 18q21 major breakpoint region. , 1987, Blood.