Implementation and Validation of a Two-Stage Energy Extraction Circuit for a Self Sustained Asset-Tracking System †

We present a two-stage energy extraction circuit for a piezoelectric energy harvester, powering an asset-tracking system. Exploiting accelerations generated by many logistic transport devices, e.g., pushcarts, forklifts, assembly belts or cars, we are able to harvest sufficient electrical energy to transmit radio signals, which will allow to track an object when it is moving. Accelerations in logistic applications are non-sinusoidal and lead to high open-circuit voltages, which demand a special adaption of the energy extraction network. We evaluate the performance of several state-of-the-art energy extraction networks and compare those to the performance of our two-stage approach under various excitation conditions. By using the proposed energy extraction circuit, the transmission rate could be increased from four to six transmissions per second for sinusoidal excitations with an open-circuit-voltage of 60V. In the practical use-case, the two-stage energy extraction network performs more than two times better compared to the one-stage and synchronized switching harvesting with inductor approach.

[1]  Jörn Thielecke,et al.  A practical evaluation of joint angle and delay estimation , 2015, 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[2]  R. Lerch,et al.  Inverse Method to estimate material parameters for piezoceramic disc actuators , 2009 .

[3]  Mickaël Lallart,et al.  Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation , 2011, Micromachines.

[4]  S. Rupitsch,et al.  Finite element based system simulation for piezoelectric vibration energy harvesting devices , 2017 .

[5]  Stefan J. Rupitsch,et al.  Complete characterization of piezoceramic materials by means of two block-shaped test samples , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[6]  Santiago Orrego,et al.  Harvesting ambient wind energy with an inverted piezoelectric flag , 2017 .

[7]  R. Xu,et al.  FIGURES OF MERITS OF PIEZOELECTRIC MATERIALS IN ENERGY HARVESTERS , 2012 .

[8]  Yi-Chung Shu,et al.  Efficiency of energy conversion for a piezoelectric power harvesting system , 2006 .

[9]  Yogesh K. Ramadass Energy processing circuits for low-power applications , 2009 .

[10]  Philip X.-L. Feng,et al.  An Ultralow Quiescent Current Power Management System With Maximum Power Point Tracking (MPPT) for Batteryless Wireless Sensor Applications , 2018, IEEE Transactions on Power Electronics.

[11]  Gianluca Gatti,et al.  On the target frequency for harvesting energy from track vibrations due to passing trains , 2019, Mechanical Systems and Signal Processing.

[12]  S. Rupitsch,et al.  Simulation-based design and optimization of piezoelectric energy harvesting systems - from mechanical excitation to usable electrical energy , 2016, 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM).

[13]  Yiannos Manoli,et al.  CMOS Circuits for Piezoelectric Energy Harvesters , 2015 .

[14]  Soaram Kim,et al.  P(VDF-TrFE) Film on PDMS Substrate for Energy Harvesting Applications , 2018 .

[15]  Oliver Paul,et al.  Integrated synchronous electric charge extraction system for piezoelectric energy harvesters , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[16]  B. Swain Recovery and recycling of lithium: A review , 2017 .

[17]  I. M. Tolentino,et al.  Design, development, and evaluation of a self-powered GPS tracking system for vehicle security , 2012, 2012 IEEE Sensors.

[18]  Il-hwan Kim,et al.  Structures, electrical, and dielectric properties of PVDF-based nanocomposite films reinforced with neat multi-walled carbon nanotube , 2012, Macromolecular Research.

[19]  Philipp Dorsch,et al.  Entwicklung und Optimierung eines piezoelektrischen Energy-Harvesting-Systems zur Energieversorgung eines Güterverfolgungssystems im Logistikbereich , 2017 .

[20]  Xin Zhang,et al.  A six-wafer combustion system for a silicon micro gas turbine engine , 2000, Journal of Microelectromechanical Systems.

[21]  Zhibin Zhang,et al.  Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film , 2014 .

[22]  Daniel J. Inman,et al.  Issues in mathematical modeling of piezoelectric energy harvesters , 2008 .

[23]  Stefan Johann Rupitsch,et al.  Piezoelectric Sensors and Actuators , 2018, Topics in Mining, Metallurgy and Materials Engineering.

[24]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[25]  Mickaël Lallart,et al.  Review on energy harvesting for structural health monitoring in aeronautical applications , 2015 .

[26]  Alexander Sutor,et al.  Reliable modeling of piezoceramic materials utilized in sensors and actuators , 2012 .

[27]  Adrien Badel,et al.  A comparison between several vibration-powered piezoelectric generators for standalone systems , 2006 .

[28]  Loreto Mateu,et al.  Modified parallel SSHI AC-DC converter for piezoelectric energy harvesting power supplies , 2011, 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC).

[29]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[30]  Alexander Sutor,et al.  Elektromechanischer Energiewandler auf Basis eines piezokeramischen BiegebalkensElectromechanical Energy Harvester Based on a Piezoceramic Bending Cantilever , 2009 .

[31]  Farid Ullah Khan,et al.  Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications , 2018, Energy Conversion and Management.

[32]  Abhiman Hande,et al.  Vibration Energy Harvesting for Disaster Asset Monitoring Using Active RFID Tags , 2010, Proceedings of the IEEE.

[33]  Klaus Finkenzeller,et al.  RFID-Handbuch : Grundlagen und praktische Anwendungen von Transpondern, kontaktlosen Chipkarten und NFC , 2015 .

[34]  Heinrich Milosiu,et al.  Sub 10µW wake-up-receiver based indoor/outdoor asset tracking system , 2015, 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA).

[35]  Reinhard Lerch,et al.  Inverse Methode zur Charakterisierung des mechanischen Frequenzverhaltens isotroper Werkstoffe , 2016 .

[36]  Peter Spies,et al.  Handbook of Energy Harvesting Power Supplies and Applications , 2015 .

[37]  Meiling Zhu,et al.  Adaptive Maximum Power Point Finding Using Direct VOC/2 Tracking Method With Microwatt Power Consumption for Energy Harvesting , 2018, IEEE Transactions on Power Electronics.

[38]  M. Stordeur,et al.  Low power thermoelectric generator-self-sufficient energy supply for micro systems , 1997, XVI ICT '97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No.97TH8291).