Unsupervised Classification of Synthetic Aperture Radar Imagery Using a Bootstrap Version of the Generalized Mixture Expectation Maximization Algorithm

In this work, we propose a bootstrapped generalized mixture estimation algorithm for synthetic aperture radar image segmentation. The Bootstrap sampling reduces the dependence effect of pixels in real images, and reduces segmentation time. Given an original image, we randomly select small representative set of pixels. Then, a generalized expectation maximization algorithm based on optimal Bootstrap sample is released for mixture identification. The generalized aspect comes from the use of distributions from the Pearson system. We validate the proposed algorithm on the classification of SAR images. The results we obtain show that the bootstrap sampling method yield the same accuracy and robustness of image classification as the basic algorithm while reducing time computing. This fact make possible the integration of such technique in real time applications.

[1]  Wojciech Pieczynski,et al.  SEM algorithm and unsupervised statistical segmentation of satellite images , 1993, IEEE Trans. Geosci. Remote. Sens..

[2]  Faouzi Ghorbel,et al.  Speeding up HMRF_EM algorithms for fast unsupervised image segmentation by Bootstrap resampling: Application to the brain tissue segmentation , 2007, Signal Process..

[3]  Bernard Chalmond,et al.  An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..

[4]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[5]  Abdelhak M. Zoubir,et al.  Bootstrap Methods and Applications : A Tutorial for the Signal Processing Practitioner , 2007 .

[6]  Maoguo Gong,et al.  Change Detection in Synthetic Aperture Radar Images based on Image Fusion and Fuzzy Clustering , 2012, IEEE Transactions on Image Processing.

[7]  Abdefihak M. Zoubir,et al.  Bootstrap Methods and Applications , 2007, IEEE Signal Processing Magazine.

[8]  Gérard Govaert,et al.  Convergence of an EM-type algorithm for spatial clustering , 1998, Pattern Recognit. Lett..

[9]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1974 .

[10]  Faouzi Ghorbel,et al.  Bootstrap sampling applied to image analysis , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[11]  Faouzi Ghorbel,et al.  Segmentation des IRM cérébrales par une variante bootstrapée du HMRF-EM : étude préliminaire sur fantômes , 2012 .

[12]  Wojciech Pieczynski,et al.  Adaptive Mixture Estimation and Unsupervised Local Bayesian Image Segmentation , 1995, CVGIP Graph. Model. Image Process..

[13]  Jun Zhang,et al.  Maximum-likelihood parameter estimation for unsupervised stochastic model-based image segmentation , 1994, IEEE Trans. Image Process..

[14]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[15]  Visa Koivunen,et al.  Robust, Scalable, and Fast Bootstrap Method for Analyzing Large Scale Data , 2016, IEEE Transactions on Signal Processing.

[16]  R. Garello,et al.  Statistical modelling of ocean SAR images , 1997 .

[17]  Alain Hillion,et al.  Estimation of fuzzy Gaussian mixture and unsupervised statistical image segmentation , 1997, IEEE Trans. Image Process..

[18]  Yu Jin Zhang,et al.  Evaluation and comparison of different segmentation algorithms , 1997, Pattern Recognit. Lett..

[19]  Jordi Inglada,et al.  Change detection on SAR images by using a parametric estimation of the Kullback-Leibler divergence , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[20]  Abdelwaheb Marzouki,et al.  Estimation of generalized mixtures and its application in image segmentation , 1997, IEEE Trans. Image Process..

[21]  Maoguo Gong,et al.  An efficient automatic SAR image segmentation framework in AIS using kernel clustering index and histogram statistics , 2014, Appl. Soft Comput..