Optimal Renormalization Group Transformation from Information Theory

The connections between information theory, statistical physics and quantum field theory have been the focus of renewed attention. In particular, the renormalization group (RG) has been explored from this perspective. Recently, a variational algorithm employing machine learning tools to identify the relevant degrees of freedom of a statistical system by maximizing an information-theoretic quantity, the real-space mutual information (RSMI), was proposed for real-space RG. Here we investigate analytically the RG coarse-graining procedure and the renormalized Hamiltonian, which the RSMI algorithm defines. By a combination of general arguments, exact calculations and toy models we show that the RSMI coarse-graining is optimal in a sense we define. In particular, a perfect RSMI coarse-graining generically does not increase the range of a short-ranged Hamiltonian, in any dimension. For the case of the 1D Ising model we perturbatively derive the dependence of the coefficients of the renormalized Hamiltonian on the real-space mutual information retained by a generic coarse-graining procedure. We also study the dependence of the optimal coarse-graining on the prior constraints on the number and type of coarse-grained variables. We construct toy models illustrating our findings.

[1]  L. Susskind The world as a hologram , 1994, hep-th/9409089.

[2]  Alan McKane,et al.  Block Spins for Partial Differential Equations , 1998 .

[3]  Fisher,et al.  Random antiferromagnetic quantum spin chains. , 1994, Physical review. B, Condensed matter.

[4]  Real-space renormalization-group approach to field evolution equations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Florian Marquardt,et al.  Reinforcement Learning with Neural Networks for Quantum Feedback , 2018, Physical Review X.

[6]  Michele Parrinello,et al.  Collective Variables from Local Fluctuations. , 2018, The journal of physical chemistry letters.

[7]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[8]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[9]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[10]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[11]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[12]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[13]  R. Swendsen Monte Carlo calculation of renormalized coupling parameters. II. d=3 Ising model , 1984 .

[14]  Assa Auerbach,et al.  Plaquette boson-fermion model of cuprates , 2001, cond-mat/0108087.

[15]  M. Wortis Griffiths singularities in the randomly dilute one-dimensional Ising model , 1974 .

[16]  A. Auerbach,et al.  Low-energy singlets in the Heisenberg antiferromagnet on the kagomé lattice. , 2004, Physical review letters.

[17]  J. Chen,et al.  Equivalence of restricted Boltzmann machines and tensor network states , 2017, 1701.04831.

[18]  Geoffrey E. Hinton,et al.  Learning and relearning in Boltzmann machines , 1986 .

[19]  Lei Wang,et al.  Neural Network Renormalization Group , 2018, Physical review letters.

[20]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[21]  Chin-Kun Hu,et al.  Random Antiferromagnetic Chain , 1979 .

[22]  Thomas Appelquist Dimensional reduction in quantum gravity , 2008 .

[23]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[24]  S. M. Apenko Information theory and renormalization group flows , 2009, 0910.2097.

[25]  Zohar Ringel,et al.  Mutual information, neural networks and the renormalization group , 2017, ArXiv.

[26]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[27]  Lei Wang,et al.  Discovering phase transitions with unsupervised learning , 2016, 1606.00318.

[28]  Contractor renormalization group technology and exact Hamiltonian real-space renormalization group transformations. , 1996, Physical review. D, Particles and fields.

[29]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[30]  David J. Schwab,et al.  Supervised Learning with Tensor Networks , 2016, NIPS.

[31]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[32]  G. Grinstein,et al.  Exact Renormalization Group with Griffiths Singularities and Spin-Glass Behavior: The Random Ising Chain , 1976 .

[33]  Carreño Carreño,et al.  Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo , 2020 .

[34]  Yoshua Bengio,et al.  Mutual Information Neural Estimation , 2018, ICML.

[35]  Andrew L. Goodwin,et al.  The crystallography of correlated disorder , 2015, Nature.

[36]  Michael Chertkov,et al.  Optimal structure and parameter learning of Ising models , 2016, Science Advances.

[37]  Renormalization Group Maps for Ising Models in Lattice-Gas Variables , 2009, 0905.2601.

[38]  Cédric Bény,et al.  The renormalization group via statistical inference , 2014, 1402.4949.

[39]  J. Sethna,et al.  Parameter Space Compression Underlies Emergent Theories and Predictive Models , 2013, Science.

[40]  Tom C. Lubensky,et al.  Critical Properties of Spin-Glasses , 1976 .

[41]  Geoffrey E. Hinton,et al.  An Efficient Learning Procedure for Deep Boltzmann Machines , 2012, Neural Computation.

[42]  A. Sokal,et al.  Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory , 1991, hep-lat/9210032.

[43]  Roger G. Melko,et al.  Learning Thermodynamics with Boltzmann Machines , 2016, ArXiv.

[44]  W. Kinzel,et al.  Critical properties of random Potts models , 1981 .

[45]  Maria Chiara Angelini,et al.  Real space renormalization group theory of disordered models of glasses , 2016, Proceedings of the National Academy of Sciences.

[46]  P Le Doussal,et al.  Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  E. Berg,et al.  Singlet excitations in pyrochlore: a study of quantum frustration. , 2002, Physical review letters.

[48]  Tobias J. Osborne,et al.  Information geometric approach to the renormalisation group , 2012, 1206.7004.

[49]  Towards the Evaluation of the Relevant Degrees of Freedom in Nonlinear Partial Differential Equations , 2001, cond-mat/0106156.

[50]  T. Garel,et al.  Strong disorder RG principles within a fixed-cell-size real space renormalization: application to the random transverse field Ising model on various fractal lattices , 2012, 1201.6136.

[51]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[52]  Z. Nussinov,et al.  Detection of hidden structures for arbitrary scales in complex physical systems , 2012, Scientific Reports.

[53]  P. Howe,et al.  Multicritical points in two dimensions, the renormalization group and the ϵ expansion , 1989 .

[54]  Robert B. Griffiths,et al.  Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet , 1969 .

[55]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[56]  C. Jayaprakash,et al.  Thermodynamic behavior of quenched random magnets from a position‐space renormalization group , 1978 .

[57]  O'Connor,et al.  Field theory entropy, the H theorem, and the renormalization group. , 1995, Physical review. D, Particles and fields.

[58]  Majority rule at low temperatures on the square and triangular lattices , 1996, cond-mat/9605104.

[59]  N. Goldenfeld,et al.  Renormalization group and perfect operators for stochastic differential equations. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  D. Ron,et al.  Renormalization Multigrid (RMG): Statistically Optimal Renormalization Group Flow and Coarse-to-Fine Monte Carlo Acceleration , 2001 .

[61]  Zhao Yang,et al.  Machine Learning Spatial Geometry from Entanglement Features , 2017, 1709.01223.

[62]  R. Swendsen Monte Carlo renormalization-group studies of the d=2 Ising model , 1979 .

[63]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[64]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[65]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[66]  Michael E. Fisher,et al.  Scaling, universality and renormalization group theory , 1983 .

[67]  T. Niemeyer,et al.  Wilson theory for 2-dimensional Ising spin systems , 1974 .

[68]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[69]  Clement Delcamp,et al.  Renormalization of tensor networks using graph independent local truncations , 2017, 1709.07460.

[70]  H. Kramers,et al.  Statistics of the Two-Dimensional Ferromagnet. Part II , 1941 .

[71]  Leo P. Kadanoff,et al.  Real Space Renormalization in Statistical Mechanics , 2013, 1301.6323.

[72]  Maria L. Rizzo,et al.  Measuring and testing dependence by correlation of distances , 2007, 0803.4101.

[73]  Shang‐keng Ma,et al.  Low-temperature properties of the random Heisenberg antiferromagnetic chain , 1980 .

[74]  Inés Samengo,et al.  Estimating the Mutual Information between Two Discrete, Asymmetric Variables with Limited Samples , 2019, Entropy.

[75]  Alan D. Sokal,et al.  Regularity properties and pathologies of position-space renormalization-group transformations , 1991 .

[76]  J. Gibbs Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics , 1902 .

[77]  Shang‐keng Ma Renormalization Group by Monte Carlo Methods , 1976 .

[78]  P Ronhovde,et al.  Detecting hidden spatial and spatio-temporal structures in glasses and complex physical systems by multiresolution network clustering , 2011, The European physical journal. E, Soft matter.

[79]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[80]  R. Bousso The Holographic principle , 2002, hep-th/0203101.

[81]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[82]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[83]  F. Niedermayer,et al.  Perfect lattice action for asymptotically free theories , 1993, hep-lat/9308004.

[84]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[85]  Sina Salek,et al.  Quantum Rate-Distortion Coding of Relevant Information , 2017, IEEE Transactions on Information Theory.

[86]  M. Fisher Renormalization group theory: Its basis and formulation in statistical physics , 1998 .