Evaluation the Injectability of Injectable Microparticle Delivery Systems on the Basis of Injection Force and Discharged Rate.

[1]  Liandong Hu,et al.  Applications and prospects of intra-articular drug delivery system in arthritis therapeutics. , 2022, Journal of controlled release : official journal of the Controlled Release Society.

[2]  Su-Tae Kang,et al.  Prediction of the Rheological Properties of Fresh Cementitious Suspensions Considering Microstructural Parameters , 2022, Materials.

[3]  Y. Zhang,et al.  Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration. , 2022, Biomaterials.

[4]  M. Prausnitz,et al.  Clinical translation of long-acting drug delivery formulations , 2022, Nature Reviews Materials.

[5]  Hongzhong Chen,et al.  Polymeric microneedle‐mediated sustained release systems: Design strategies and promising applications for drug delivery , 2021, Asian journal of pharmaceutical sciences.

[6]  D. Kozak,et al.  Impact of Particle Flocculation on the Dissolution and Bioavailability of Injectable Suspensions. , 2021, International journal of pharmaceutics.

[7]  Robert Langer,et al.  Modeling, design, and machine learning-based framework for optimal injectability of microparticle-based drug formulations , 2020, Science Advances.

[8]  T. Niwa,et al.  [Research on Gliding and Discharge Performance of Suspended Injection from Syringe -Effect of Diameter Ratio of Suspending Particle against Needle Hole on Needle Passageability]. , 2020, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.

[9]  Aniruddha Bose,et al.  Filling the Gap: A Correlation between Objective and Subjective Measures of Injectability , 2020, Advanced healthcare materials.

[10]  Hetal Khatri,et al.  Injectability as a function of viscosity and dosing materials for subcutaneous administration , 2019, International journal of pharmaceutics.

[11]  C. Regillo,et al.  Comparing 33-Gauge versus 30-Gauge Needles for Intravitreal Injections. , 2018, Ophthalmology. Retina.

[12]  Kazu Takeda,et al.  Optimal range of injection rates for a lymphatic drug delivery system , 2018, Journal of biophotonics.

[13]  K. Shakesheff,et al.  Improved delivery of PLGA microparticles and microparticle‐cell scaffolds in clinical needle gauges using modified viscosity formulations , 2018, International journal of pharmaceutics.

[14]  A. Vo,et al.  The Biomechanics and Optimization of the Needle-Syringe System for Injecting Triamcinolone Acetonide into Keloids , 2016, Journal of medical engineering.

[15]  Ahmed Besheer,et al.  Calculation of injection forces for highly concentrated protein solutions. , 2015, International journal of pharmaceutics.

[16]  C. Park,et al.  Needle-free transdermal delivery using PLGA nanoparticles: effect of particle size, injection pressure and syringe orifice diameter. , 2014, Colloids and surfaces. B, Biointerfaces.

[17]  A. Şişman,et al.  The effects of different syringe volume, needle size and sample volume on blood gas analysis in syringes washed with heparin , 2012, Biochemia medica.

[18]  P. Minghetti,et al.  Injectability Evaluation: An Open Issue , 2011, AAPS PharmSciTech.

[19]  F. Agnely,et al.  Rheological and syringeability properties of highly concentrated human polyclonal immunoglobulin solutions. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[20]  Lieven Baert,et al.  Development of a long-acting injectable formulation with nanoparticles of rilpivirine (TMC278) for HIV treatment. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[21]  M. Kurisawa,et al.  An injectable hyaluronic acid-tyramine hydrogel system for protein delivery. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[22]  R. Bodmeier,et al.  Injectability of biodegradable in situ forming microparticle systems (ISM). , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[23]  Z. Lian,et al.  A biomechanical model for real-time simulation of PMMA injection with haptics , 2008, Comput. Biol. Medicine.

[24]  F. Debruyne,et al.  Abarelix for injectable suspension: first-in-class gonadotropin-releasing hormone antagonist for prostate cancer. , 2006, Future oncology.

[25]  M J Hawkins,et al.  Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. , 2006, Annals of oncology : official journal of the European Society for Medical Oncology.

[26]  Mayur M. Patel,et al.  Long-Acting Injectables: Current Perspectives and Future Promise. , 2019, Critical reviews in therapeutic drug carrier systems.

[27]  E. Stefánsson,et al.  Microspheres and Nanotechnology for Drug Delivery. , 2016, Developments in ophthalmology.

[28]  J. Gerancher,et al.  DepoDur® (extended-release epidural morphine): a review of an old drug in a new vehicle , 2007 .